BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 6402508)

  • 1. Utilization of exogenously added acetyl coenzyme A by intact isolated lysosomes.
    Rome LH; Hill DF; Bame KJ; Crain LR
    J Biol Chem; 1983 Mar; 258(5):3006-11. PubMed ID: 6402508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetyl coenzyme A: alpha-glucosaminide N-acetyltransferase. Evidence for a transmembrane acetylation mechanism.
    Bame KJ; Rome LH
    J Biol Chem; 1985 Sep; 260(20):11293-9. PubMed ID: 3897232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. O-acetylation and de-O-acetylation of sialic acids. O-acetylation of sialic acids in the rat liver Golgi apparatus involves an acetyl intermediate and essential histidine and lysine residues--a transmembrane reaction?
    Higa HH; Butor C; Diaz S; Varki A
    J Biol Chem; 1989 Nov; 264(32):19427-34. PubMed ID: 2509477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic evidence for transmembrane acetylation by lysosomes.
    Bame KJ; Rome LH
    Science; 1986 Sep; 233(4768):1087-9. PubMed ID: 3090688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sanfilippo syndrome type C: deficiency of acetyl-CoA:alpha-glucosaminide N-acetyltransferase in skin fibroblasts.
    Klein U; Kresse H; von Figura K
    Proc Natl Acad Sci U S A; 1978 Oct; 75(10):5185-9. PubMed ID: 33384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the biogenesis of heparan sulfate acetyl-CoA:alpha-glucosaminide N-acetyltransferase provides insights into the mechanism underlying its complete deficiency in mucopolysaccharidosis IIIC.
    Durand S; Feldhammer M; Bonneil E; Thibault P; Pshezhetsky AV
    J Biol Chem; 2010 Oct; 285(41):31233-42. PubMed ID: 20650889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The diagnosis of the Sanfilippo C syndrome, using monosaccharide and oligosaccharide substrates to assay acetyl-CoA: 2-amino-2-deoxy-alpha-glucoside N-acetyltransferase activity.
    Hopwood JJ; Elliott H
    Clin Chim Acta; 1981 Apr; 112(1):67-75. PubMed ID: 6786804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of mucopolysaccharide in intact isolated lysosomes.
    Rome LH; Crain LR
    J Biol Chem; 1981 Nov; 256(21):10763-8. PubMed ID: 6457043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lysosomal degradation of glycoproteins and glycosaminoglycans. Efflux and recycling of sulphate and N-acetylhexosamines.
    Rome LH; Hill DF
    Biochem J; 1986 May; 235(3):707-13. PubMed ID: 3753439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-acetylglucosamine 6-sulfate residues in keratan sulfate and heparan sulfate are desulfated by the same enzyme.
    Hopwood JJ; Elliott H
    Biochem Int; 1983 Feb; 6(2):141-8. PubMed ID: 6236815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human acetyl-coenzyme A:alpha-glucosaminide N-acetyltransferase. Kinetic characterization and mechanistic interpretation.
    Meikle PJ; Whittle AM; Hopwood JJ
    Biochem J; 1995 May; 308 ( Pt 1)(Pt 1):327-33. PubMed ID: 7755582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sanfilippo disease type D: deficiency of N-acetylglucosamine-6-sulfate sulfatase required for heparan sulfate degradation.
    Kresse H; Paschke E; von Figura K; Gilberg W; Fuchs W
    Proc Natl Acad Sci U S A; 1980 Nov; 77(11):6822-6. PubMed ID: 6450420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the human heparan-α-glucosaminide
    Navratna V; Kumar A; Rana JK; Mosalaganti S
    bioRxiv; 2024 Jun; ():. PubMed ID: 37961489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liberation of N-acetylglucosamine-6-sulfate by human beta-N-acetylhexosaminidase A.
    Kresse H; Fuchs W; Glössl J; Holtfrerich D; Gilberg W
    J Biol Chem; 1981 Dec; 256(24):12926-32. PubMed ID: 6458607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetyl-coenzyme A:alpha-glucosaminide N-acetyltransferase. Evidence for an active site histidine residue.
    Bame KJ; Rome LH
    J Biol Chem; 1986 Aug; 261(22):10127-32. PubMed ID: 3733705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The transport and utilization of acetyl coenzyme A by rat liver Golgi vesicles. O-acetylated sialic acids are a major product.
    Varki A; Diaz S
    J Biol Chem; 1985 Jun; 260(11):6600-8. PubMed ID: 3997840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HGSNAT enzyme deficiency results in accumulation of heparan sulfate in podocytes and basement membranes.
    Nagel L; Oliveira R; Pshezhetsky AV; Morales CR
    Histol Histopathol; 2019 Dec; 34(12):1377-1385. PubMed ID: 31157913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new biochemical subtype of the Sanfilippo syndrome: characterization of the storage material in cultured fibroblasts of Sanfilippo C patients.
    Kresse H; Von Figura K; Klein U
    Eur J Biochem; 1978 Dec; 92(2):333-9. PubMed ID: 153835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective depolymerisation of heparin to produce radio-labelled substrates for sulfamidase, 2-acetamido-2-deoxy-alpha-D-glucosidase, acetyl-CoA:2-amino-2-deoxy-alpha-D-glucoside N-acetyltransferase, and 2-acetamido-2-deoxy-D-glucose 6-sulfate sulfatase.
    Hopwood JJ; Elliott H
    Carbohydr Res; 1981 May; 91(2):165-90. PubMed ID: 7018684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification and characterization of two reversible and ADP-dependent acetyl coenzyme A synthetases from the hyperthermophilic archaeon Pyrococcus furiosus.
    Mai X; Adams MW
    J Bacteriol; 1996 Oct; 178(20):5897-903. PubMed ID: 8830684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.