These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 6402709)

  • 41. An unorthodox sensory adaptation site in the Escherichia coli serine chemoreceptor.
    Han XS; Parkinson JS
    J Bacteriol; 2014 Feb; 196(3):641-9. PubMed ID: 24272777
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Chemotaxis in Escherichia coli: methylation of che gene products.
    Silverman M; Simon M
    Proc Natl Acad Sci U S A; 1977 Aug; 74(8):3317-21. PubMed ID: 333434
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Primary structure of an archaebacterial transducer, a methyl-accepting protein associated with sensory rhodopsin I.
    Yao VJ; Spudich JL
    Proc Natl Acad Sci U S A; 1992 Dec; 89(24):11915-9. PubMed ID: 1465418
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mutations specifically affecting ligand interaction of the Trg chemosensory transducer.
    Park C; Hazelbauer GL
    J Bacteriol; 1986 Jul; 167(1):101-9. PubMed ID: 3087946
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chemotaxis of Leptospirillum ferrooxidans and other acidophilic chemolithotrophs: comparison with the Escherichia coli chemosensory system.
    Acuña J; Rojas J; Amaro AM; Toledo H; Jerez CA
    FEMS Microbiol Lett; 1992 Sep; 75(1):37-42. PubMed ID: 1526464
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Role of HAMP domains in chemotaxis signaling by bacterial chemoreceptors.
    Khursigara CM; Wu X; Zhang P; Lefman J; Subramaniam S
    Proc Natl Acad Sci U S A; 2008 Oct; 105(43):16555-60. PubMed ID: 18940922
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Site-directed mutations altering methyl-accepting residues of a sensory transducer protein.
    Nowlin DM; Bollinger J; Hazelbauer GL
    Proteins; 1988; 3(2):102-12. PubMed ID: 3041407
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of a methyl-accepting chemotaxis protein for the ribose and galactose chemoreceptors of Escherichia coli.
    Kondoh H; Ball CB; Adler J
    Proc Natl Acad Sci U S A; 1979 Jan; 76(1):260-4. PubMed ID: 370826
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An Escherichia coli chemoreceptor gene is temporally controlled in Caulobacter.
    Frederikse PH; Shapiro L
    Proc Natl Acad Sci U S A; 1989 Jun; 86(11):4061-5. PubMed ID: 2657737
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chemotaxis of Escherichia coli to pyrimidines: a new role for the signal transducer tap.
    Liu X; Parales RE
    J Bacteriol; 2008 Feb; 190(3):972-9. PubMed ID: 18065551
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Studies on bacterial chemotaxis. V. Possible involvement of four species of the methyl-accepting chemotaxis protein in chemotaxis of Escherichia coli.
    Koiwai O; Minoshima S; Hayashi H
    J Biochem; 1980 May; 87(5):1365-70. PubMed ID: 6993458
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Maltose chemoreceptor of Escherichia coli: interaction of maltose-binding protein and the tar signal transducer.
    Kossmann M; Wolff C; Manson MD
    J Bacteriol; 1988 Oct; 170(10):4516-21. PubMed ID: 3049536
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chemotactic signal integration in bacteria.
    Khan S; Spudich JL; McCray JA; Trentham DR
    Proc Natl Acad Sci U S A; 1995 Oct; 92(21):9757-61. PubMed ID: 7568212
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The region preceding the C-terminal NWETF pentapeptide modulates baseline activity and aspartate inhibition of Escherichia coli Tar.
    Lai RZ; Bormans AF; Draheim RR; Wright GA; Manson MD
    Biochemistry; 2008 Dec; 47(50):13287-95. PubMed ID: 19053273
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Discovery of a New Chemoeffector for
    Chen X; Bi S; Ma X; Sourjik V; Lai L
    ACS Bio Med Chem Au; 2022 Aug; 2(4):386-394. PubMed ID: 37102165
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genetics of methyl-accepting chemotaxis proteins in Escherichia coli: null phenotypes of the tar and tap genes.
    Slocum MK; Parkinson JS
    J Bacteriol; 1985 Aug; 163(2):586-94. PubMed ID: 2991198
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Functional and structural effects of seven-residue deletions on the coiled-coil cytoplasmic domain of a chemoreceptor.
    Massazza DA; Izzo SA; Gasperotti AF; Herrera Seitz MK; Studdert CA
    Mol Microbiol; 2012 Jan; 83(1):224-39. PubMed ID: 22111959
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genetic evidence for interaction between the CheW and Tsr proteins during chemoreceptor signaling by Escherichia coli.
    Liu JD; Parkinson JS
    J Bacteriol; 1991 Aug; 173(16):4941-51. PubMed ID: 1860813
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sensory transduction in Escherichia coli: two complementary pathways of information processing that involve methylated proteins.
    Springer MS; Goy MF; Adler J
    Proc Natl Acad Sci U S A; 1977 Aug; 74(8):3312-6. PubMed ID: 333433
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Flexible Hinges in Bacterial Chemoreceptors.
    Akkaladevi N; Bunyak F; Stalla D; White TA; Hazelbauer GL
    J Bacteriol; 2018 Mar; 200(5):. PubMed ID: 29229700
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.