These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 6404303)
1. Modulation of glucose transport in human red blood cells by ATP. Jacquez JA Biochim Biophys Acta; 1983 Jan; 727(2):367-78. PubMed ID: 6404303 [TBL] [Abstract][Full Text] [Related]
2. Cholinergic stimulation of glucose transport in human erythrocytes. Nelson MJ; Huestis WH Biochim Biophys Acta; 1982 Mar; 685(3):279-82. PubMed ID: 6802180 [TBL] [Abstract][Full Text] [Related]
3. Stimulation by calcium of glucose uptake and lactate production in pigeon erythrocytes. Lucas M Biomed Biochim Acta; 1987; 46(2-3):S253-7. PubMed ID: 3109406 [TBL] [Abstract][Full Text] [Related]
4. ATP regulation of the human red cell sugar transporter. Carruthers A J Biol Chem; 1986 Aug; 261(24):11028-37. PubMed ID: 3733746 [TBL] [Abstract][Full Text] [Related]
5. Direct evidence for ATP modulation of sugar transport in human erythrocyte ghosts. Hebert DN; Carruthers A J Biol Chem; 1986 Aug; 261(22):10093-9. PubMed ID: 3733703 [TBL] [Abstract][Full Text] [Related]
6. Irreversible ATP depletion caused by low concentrations of formaldehyde and of calcium-chelator esters in intact human red cells. Tiffert T; Garcia-Sancho J; Lew VL Biochim Biophys Acta; 1984 Jun; 773(1):143-56. PubMed ID: 6428450 [TBL] [Abstract][Full Text] [Related]
7. Maximal calcium extrusion capacity and stoichiometry of the human red cell calcium pump. Dagher G; Lew VL J Physiol; 1988 Dec; 407():569-86. PubMed ID: 3151497 [TBL] [Abstract][Full Text] [Related]
8. Effects of ATP depletion on the mechanism of hexose transport in intact human erythrocytes. May JM FEBS Lett; 1988 Dec; 241(1-2):188-90. PubMed ID: 3143605 [TBL] [Abstract][Full Text] [Related]
9. The magnesium dependence of sodium-pump-mediated sodium-potassium and sodium-sodium exchange in intact human red cells. Flatman PW; Lew VL J Physiol; 1981 Jun; 315():421-46. PubMed ID: 6796677 [TBL] [Abstract][Full Text] [Related]
10. Phosphorylation of the red blood cell membrane during the active transport of C++. Cha YN; Lee KS J Gen Physiol; 1976 Feb; 67(2):251-61. PubMed ID: 130465 [TBL] [Abstract][Full Text] [Related]
11. Active Ca2+ transport by membrane vesicles from pigeon erythrocytes. Stimulation by amino acids, ATP, GTP, Pi and some other cell constituents. Lee JW; Vidaver GA Biochim Biophys Acta; 1981 May; 643(2):421-34. PubMed ID: 6784766 [TBL] [Abstract][Full Text] [Related]
12. Transport parameters and stoichiometry of active calcium ion extrusion in intact human red cells. Sarkadi B; Szász I; Gerlóczy A; Gárdos G Biochim Biophys Acta; 1977 Jan; 464(1):93-107. PubMed ID: 137747 [TBL] [Abstract][Full Text] [Related]
13. On the ATP dependence of the Ca 2+ -induced increase in K + permeability observed in human red cells. Lew VL Biochim Biophys Acta; 1971 Jun; 233(3):827-30. PubMed ID: 5113929 [No Abstract] [Full Text] [Related]
14. ATP-independent calcium net movements in human red cell ghosts. Porzig H J Membr Biol; 1972; 8(3):237-58. PubMed ID: 5084116 [No Abstract] [Full Text] [Related]
15. Calcium does not mediate the shape change that follows ATP depletion in human erythrocytes. Ferrell JE; Huestis WH Biochim Biophys Acta; 1982 May; 687(2):321-8. PubMed ID: 6807344 [TBL] [Abstract][Full Text] [Related]
16. Calcium movements across the membrane of human red cells. Schatzmann HJ; Vincenzi FF J Physiol; 1969 Apr; 201(2):369-95. PubMed ID: 4238381 [TBL] [Abstract][Full Text] [Related]
17. The effect of ATP-depletion on the inhibition of glucose exits from human red cells. Kaloyianni M; Baker GF Biochim Biophys Acta; 1998 Mar; 1369(2):295-303. PubMed ID: 9518657 [TBL] [Abstract][Full Text] [Related]
18. Calcium ion transport by pig erythrocyte membrane vesicles. Buckley JT Biochem J; 1974 Sep; 142(3):521-6. PubMed ID: 4282703 [TBL] [Abstract][Full Text] [Related]
19. The effects of ionophore A23187 on erythrocytes. Relationship of atp and 2,3-diphosphoglycerate to calcium-binding capacity. Edmondson JW; Li TK Biochim Biophys Acta; 1976 Aug; 443(1):106-13. PubMed ID: 782543 [TBL] [Abstract][Full Text] [Related]
20. The interaction of adenosinetriphosphate and inorganic phosphate with the sodium pump in red cells. Garay RP; Garrahan PJ J Physiol; 1975 Jul; 249(1):51-67. PubMed ID: 1151878 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]