These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 6404322)

  • 1. Conformational heterogeneity of the copper binding site in azurin. A time-resolved fluorescence study.
    Szabo AG; Stepanik TM; Wayner DM; Young NM
    Biophys J; 1983 Mar; 41(3):233-44. PubMed ID: 6404322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A time-resolved fluorescence study of azurin and metalloazurin derivatives.
    Hutnik CM; Szabo AG
    Biochemistry; 1989 May; 28(9):3935-9. PubMed ID: 2502173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Confirmation that multiexponential fluorescence decay behavior of holoazurin originates from conformational heterogeneity.
    Hutnik CM; Szabo AG
    Biochemistry; 1989 May; 28(9):3923-34. PubMed ID: 2502172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homogeneity and variability in the structure of azurin molecules studied by fluorescence decay and circular polarization.
    Grinvald A; Schlessinger J; Pecht I; Steinberg IZ
    Biochemistry; 1975 May; 14(9):1921-29. PubMed ID: 235970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tyrosine emission in the tryptophanless azurin from Pseudomonas fluorescens.
    Ugurbil K; Bersohn R
    Biochemistry; 1977 Mar; 16(5):895-901. PubMed ID: 402931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of a pH-dependent conformational change in azurin by time-resolved phosphorescence.
    Hansen JE; Steel DG; Gafni A
    Biophys J; 1996 Oct; 71(4):2138-43. PubMed ID: 8889189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Internal motion and electron transfer in proteins: a picosecond fluorescence study of three homologous azurins.
    Petrich JW; Longworth JW; Fleming GR
    Biochemistry; 1987 May; 26(10):2711-22. PubMed ID: 3111523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-resolved fluorescence study of azurin variants: conformational heterogeneity and tryptophan mobility.
    Kroes SJ; Canters GW; Gilardi G; van Hoek A; Visser AJ
    Biophys J; 1998 Nov; 75(5):2441-50. PubMed ID: 9788939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational properties of azurin in solution as determined from resolution-enhanced Fourier-transform infrared spectra.
    Surewicz WK; Szabo AG; Mantsch HH
    Eur J Biochem; 1987 Sep; 167(3):519-23. PubMed ID: 3115776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fine structure of luminescence spectra of azurin.
    Burstein EA; Permyakov EA; Yashin VA; Burkhanov SA; Finazzi Agro A
    Biochim Biophys Acta; 1977 Mar; 491(1):155-9. PubMed ID: 402948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper-induced spectroscopic and structural changes in short peptides derived from azurin.
    Das D; Mitra S; Kumar R; Banerjee S; Koti Ainavarapu SR
    Arch Biochem Biophys; 2020 Jul; 687():108388. PubMed ID: 32343975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper binding before polypeptide folding speeds up formation of active (holo) Pseudomonas aeruginosa azurin.
    Pozdnyakova I; Wittung-Stafshede P
    Biochemistry; 2001 Nov; 40(45):13728-33. PubMed ID: 11695922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational equilibria accompanying the electron transfer between cytochrome c (P551) and azurin from Pseudomonas aeruginosa.
    Rosen P; Pecht I
    Biochemistry; 1976 Feb; 15(4):775-86. PubMed ID: 174718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of thermally induced denaturation of azurin and azurin derivatives by differential scanning calorimetry: evidence for copper selectivity.
    Engeseth HR; McMillin DR
    Biochemistry; 1986 May; 25(9):2448-55. PubMed ID: 3087419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding of azurin to cytochrome c 551 as investigated by surface plasmon resonance and fluorescence.
    Santini S; Bizzarri AR; Yamada T; Beattie CW; Cannistraro S
    J Mol Recognit; 2014 Mar; 27(3):124-30. PubMed ID: 24446376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic fluorescence of the bacterial copper-containing protein amicyanin.
    Rosato N; Mei G; Savini I; Del Bolgia F; Finazzi-Agrò A; Lommen A; Canters GW
    Arch Biochem Biophys; 1991 Jan; 284(1):112-5. PubMed ID: 1989489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The environment of the tryptophan residue in Pseudomonas aeruginosa azurin and its fluorescence properties.
    Turoverov KK; Kuznetsova IM; Zaitsev VN
    Biophys Chem; 1985 Nov; 23(1-2):79-89. PubMed ID: 3937558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A kinetic study of the reconstitution of azurin from Cu(II) and the apoprotein.
    Marks RH; Miller RD
    Arch Biochem Biophys; 1979 Jun; 195(1):103-11. PubMed ID: 38744
    [No Abstract]   [Full Text] [Related]  

  • 19. Probing the structure and mobility of Pseudomonas aeruginosa azurin by circular dichroism and dynamic fluorescence anisotropy.
    Mei G; Gilardi G; Venanzi M; Rosato N; Canters GW; Agró AF
    Protein Sci; 1996 Nov; 5(11):2248-54. PubMed ID: 8931143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photophysics of metalloazurins.
    Hansen JE; Longworth JW; Fleming GR
    Biochemistry; 1990 Aug; 29(31):7329-38. PubMed ID: 2119804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.