BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 6404575)

  • 1. Effects of neonatal sympathectomy by 6-hydroxydopamine on blood pressure and intravascular volume in young stroke-prone spontaneously hypertensive rats.
    Rascher W; Dietz R; Schömig A; Voss U; Gross F
    Clin Exp Pharmacol Physiol; 1983; 10(1):27-33. PubMed ID: 6404575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of neonatal sympathectomy by 6-hydroxydopamine on volume and resistance regulation in stroke-prone spontaneously hypertensive rats.
    Schömig A; Dietz R; Rascher W; Ebser H; Voss U; Gross F
    Clin Sci (Lond); 1979 Dec; 57 Suppl 5():201s-204s. PubMed ID: 540431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of chemical sympathectomy on hypertension and stroke in stroke-prone spontaneously hypertensive rats.
    Ikeda H; Shino A; Nagaoka A
    Eur J Pharmacol; 1979 Jan; 53(2):173-9. PubMed ID: 759197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blood pressure and acidic renin forms in stroke-prone hypertensive rats.
    Lee J; Malvin RL; Jokelainen PT
    Am J Physiol; 1989 Aug; 257(2 Pt 2):F275-9. PubMed ID: 2669528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of captopril on converting enzyme activity in chemically sympathectomized, spontaneously hypertensive rats.
    Sattar MA; Latiff A; Gan EK
    Jpn J Pharmacol; 1985 Nov; 39(3):291-7. PubMed ID: 3005728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between cardiovascular hypertrophy and cardiac baroreflex function in spontaneously hypertensive and stroke-prone rats.
    Minami N; Head GA
    J Hypertens; 1993 May; 11(5):523-33. PubMed ID: 8390524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of the sympathetic nervous system to the hypertensive effect of a high sodium diet in stroke-prone spontaneously hypertensive rats.
    Dietz R; Schömig A; Rascher W; Strasser R; Lüth JB; Ganten U; Kübler W
    Hypertension; 1982; 4(6):773-81. PubMed ID: 7141603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Renal hemodynamics and sodium excretion in stroke-prone spontaneously hypertensive rats.
    Nagaoka A; Kakihana M; Suno M; Hamajo K
    Am J Physiol; 1981 Sep; 241(3):F244-9. PubMed ID: 7282927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adrenal and circulating renin-angiotensin system in stroke-prone hypertensive rats.
    Kim S; Tokuyama M; Hosoi M; Yamamoto K
    Hypertension; 1992 Sep; 20(3):280-91. PubMed ID: 1516946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin of the Y chromosome influences intrarenal vascular responsiveness to angiotensin I and angiotensin (1-7) in stroke-prone spontaneously hypertensive rats.
    Sampson AK; Andrews KL; Graham D; McBride MW; Head GA; Thomas MC; Chin-Dusting JP; Dominiczak AF; Jennings GL
    Hypertension; 2014 Dec; 64(6):1376-83. PubMed ID: 25201895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of neonatal sympathectomy with 6-hydroxydopamine on reactivity of the renin-angiotensin system in spontaneously hypertensive rats.
    Sinaiko AR; Cooper MJ; Mirkin BL
    Clin Sci (Lond); 1980 Aug; 59(2):123-9. PubMed ID: 6996899
    [No Abstract]   [Full Text] [Related]  

  • 12. Dietary salt excess unmasks blunted aldosterone suppression and sodium retention in the stroke-prone phenotype of the spontaneously hypertensive rat.
    Volpe M; Rubattu S; Ganten D; Enea I; Russo R; Lembo G; Mirante A; Condorelli G; Trimarco B
    J Hypertens; 1993 Aug; 11(8):793-8. PubMed ID: 8228202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of blood pressure and end-organ damage in maturing salt-loaded stroke-prone spontaneously hypertensive rats by oral angiotensin II receptor blockade.
    Camargo MJ; von Lutterotti N; Campbell WG; Pecker MS; James GD; Timmermans PB; Laragh JH
    J Hypertens; 1993 Jan; 11(1):31-40. PubMed ID: 8382237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sympathetic nerves modify mitochondrial and capillary growth in normotensive and hypertensive rats.
    Tomanek RJ
    J Mol Cell Cardiol; 1989 Aug; 21(8):755-64. PubMed ID: 2528641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of afferent renal nerve signals to acute and chronic blood pressure regulation in stroke-prone spontaneously hypertensive rats.
    Ikeda S; Shinohara K; Kashihara S; Matsumoto S; Yoshida D; Nakashima R; Ono Y; Nishihara M; Katsurada K; Tsutsui H
    Hypertens Res; 2023 Jan; 46(1):268-279. PubMed ID: 36369375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vasopressin in the plasma of stroke-prone spontaneously hypertensive rats.
    Rascher W; Weidmann E; Gross F
    Clin Sci (Lond); 1981 Sep; 61(3):295-8. PubMed ID: 7261551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neonatal sympathectomy of normotensive Wistar-Kyoto and spontaneously hypertensive rats with 6-hydroxydopamine: effects on resistance vessel structure and sensitivity to calcium.
    Nyborg NC; Korsgaard N; Mulvany MJ
    J Hypertens; 1986 Aug; 4(4):455-61. PubMed ID: 3095420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of circadian blood pressure rhythm and target-organ damage in stroke-prone spontaneously hypertensive rats.
    Shimamura T; Nakajima M; Iwasaki T; Hayasaki Y; Yonetani Y; Iwaki K
    J Hypertens; 1999 Feb; 17(2):211-20. PubMed ID: 10067790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intralymphocytic free calcium and magnesium in stroke-prone spontaneously hypertensive rats and effects of blood pressure and various antihypertensive agents.
    Adachi M; Nara Y; Mano M; Ikeda K; Horie R; Yamori Y
    Clin Exp Pharmacol Physiol; 1993 Sep; 20(9):587-93. PubMed ID: 8222339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The renal kallikrein-kinin system in spontaneously hypertensive rats.
    Bönner G; Unger T; Rascher W; Speck G; Ganten D; Gross F
    Agents Actions; 1984 Oct; 15(3-4):111-8. PubMed ID: 6570082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.