BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 6404885)

  • 21. RNA polymerase of Myxococcus xanthus: purification and selective transcription in vitro with bacteriophage templates.
    Rudd KE; Zusman DR
    J Bacteriol; 1982 Jul; 151(1):89-105. PubMed ID: 6806251
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integration of the bacteriophage HP1c1 genome into the Haemophilus influenzae Rd chromosome in the lysogenic state.
    Waldman AS; Fitzmaurice WP; Scocca JJ
    J Bacteriol; 1986 Jan; 165(1):297-300. PubMed ID: 3484476
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physical characterization of the genome of the Myxococcus xanthus bacteriophage MX-8.
    Stellwag E; Fink JM; Zissler J
    Mol Gen Genet; 1985; 199(1):123-32. PubMed ID: 2987644
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integration and lysogeny by an enveloped mycoplasma virus.
    Dybvig K; Maniloff J
    J Gen Virol; 1983 Aug; 64 (Pt 8)():1781-5. PubMed ID: 6308135
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Staphylococcus aureus bacteriophages mediating the simultaneous lysogenic conversion of beta-lysin, staphylokinase and enterotoxin A: molecular mechanism of triple conversion.
    Coleman DC; Sullivan DJ; Russell RJ; Arbuthnott JP; Carey BF; Pomeroy HM
    J Gen Microbiol; 1989 Jun; 135(6):1679-97. PubMed ID: 2533245
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determination of the attP and attB sites of phage CD27 from Clostridium difficile NCTC 12727.
    Williams R; Meader E; Mayer M; Narbad A; Roberts AP; Mullany P
    J Med Microbiol; 2013 Sep; 62(Pt 9):1439-1443. PubMed ID: 23699063
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integrative recombination of bacteriophage lambda: extent of the DNA sequence involved in attachment site function.
    Mizuuchi M; Mizuuchi K
    Proc Natl Acad Sci U S A; 1980 Jun; 77(6):3220-4. PubMed ID: 6251450
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plasmid-mediated UV-protection in Myxococcus xanthus.
    McCann K; Clarke CH
    Mol Gen Genet; 1981; 182(1):137-42. PubMed ID: 6790909
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integration of staphylococcal phage L54a occurs by site-specific recombination: structural analysis of the attachment sites.
    Lee CY; Iandolo JJ
    Proc Natl Acad Sci U S A; 1986 Aug; 83(15):5474-8. PubMed ID: 2942938
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bacteriophage lambda site-specific recombination proceeds with a defined order of strand exchanges.
    Kitts PA; Nash HA
    J Mol Biol; 1988 Nov; 204(1):95-107. PubMed ID: 2975338
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Control of directionality in the site-specific recombination system of the Streptomyces phage phiC31.
    Thorpe HM; Wilson SE; Smith MC
    Mol Microbiol; 2000 Oct; 38(2):232-41. PubMed ID: 11069650
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lysogenic bacteriophage M1 from Selenomonas ruminantium: isolation, characterization and DNA sequence analysis of the integration site.
    Cheong JPE; Brooker JD
    Microbiology (Reading); 1998 Aug; 144 ( Pt 8)():2195-2202. PubMed ID: 9720041
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detection of homology to the beta bacteriophage integration site in a wide variety of Corynebacterium spp.
    Cianciotto N; Rappuoli R; Groman N
    J Bacteriol; 1986 Oct; 168(1):103-8. PubMed ID: 3019994
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Location of the Bacillus subtilis temperate bacteriophage phi 105 attP attachment site.
    Ellis DM; Dean DH
    J Virol; 1986 Apr; 58(1):223-4. PubMed ID: 3081735
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Construction of an integration-proficient vector based on the site-specific recombination mechanism of enterococcal temperate phage phiFC1.
    Yang HY; Kim YW; Chang HI
    J Bacteriol; 2002 Apr; 184(7):1859-64. PubMed ID: 11889091
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nucleotide sequences and properties of the sites involved in lysogenic insertion of the bacteriophage HP1c1 genome into the Haemophilus influenzae chromosome.
    Waldman AS; Goodman SD; Scocca JJ
    J Bacteriol; 1987 Jan; 169(1):238-46. PubMed ID: 3491821
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolation of bacteriophage MX4, a generalized transducing phage for Myxococcus xanthus.
    Campos JM; Geisselsoder J; Zusman DR
    J Mol Biol; 1978 Feb; 119(2):167-78. PubMed ID: 416222
    [No Abstract]   [Full Text] [Related]  

  • 38. Use of real-time quantitative PCR for the analysis of phiLC3 prophage stability in lactococci.
    Lunde M; Blatny JM; Lillehaug D; Aastveit AH; Nes IF
    Appl Environ Microbiol; 2003 Jan; 69(1):41-8. PubMed ID: 12513975
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quorum Sensing and Metabolic State of the Host Control Lysogeny-Lysis Switch of Bacteriophage T1.
    Laganenka L; Sander T; Lagonenko A; Chen Y; Link H; Sourjik V
    mBio; 2019 Sep; 10(5):. PubMed ID: 31506310
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic elements novel for Corynebacterium diphtheriae: specialized transducing elements and transposons.
    Buck GA; Groman NB
    J Bacteriol; 1981 Oct; 148(1):143-52. PubMed ID: 6270060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.