BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 6406022)

  • 41. Cell wall synthesis is a major target of mycoparasitic antagonism by Trichoderma harzianum.
    Lorito M; Farkas V; Rebuffat S; Bodo B; Kubicek CP
    J Bacteriol; 1996 Nov; 178(21):6382-5. PubMed ID: 8892847
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cell wall-degrading isoenzyme profiles of Trichoderma biocontrol strains show correlation with rDNA taxonomic species.
    Sanz L; Montero M; Grondona I; Vizcaíno JA; Llobell A; Hermosa R; Monte E
    Curr Genet; 2004 Nov; 46(5):277-86. PubMed ID: 15480677
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Growth of Trichoderma viride on crude cell wall preparations from barley.
    Kanauchi M; Bamforth CW
    J Agric Food Chem; 2001 Feb; 49(2):883-7. PubMed ID: 11262045
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Purification and properties of an exo-cellulase component of novel type from Trichoderma miride.
    Shikata S; Nsizawa K
    J Biochem; 1975 Sep; 78(3):499-512. PubMed ID: 5409
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization of a chitinase and an endo-beta-1,3-glucanase from Trichoderma harzianum Rifai T24 involved in control of the phytopathogen Sclerotium rolfsii.
    El-Katatny MH; Gudelj M; Robra KH; Elnaghy MA; Gübitz GM
    Appl Microbiol Biotechnol; 2001 Jul; 56(1-2):137-43. PubMed ID: 11499921
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sophorose induction of an intracellular b-glucosidase in Trichoderma.
    Loewenberg JR
    Arch Microbiol; 1984 Jan; 137(1):53-7. PubMed ID: 6538780
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interaction of ammonium, glucose, and chitin regulates the expression of cell wall-degrading enzymes in Trichoderma atroviride strain P1.
    Donzelli BG; Harman GE
    Appl Environ Microbiol; 2001 Dec; 67(12):5643-7. PubMed ID: 11722918
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The alpha-D-mannan core of a complex cell-wall heteroglycan of Trichoderma reesei is responsible for beta-glucosidase activation.
    Rath J; Messner R; Kosma P; Altmann F; März L; Kubicek CP
    Arch Microbiol; 1995 Dec; 164(6):414-9. PubMed ID: 8588743
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Location and formation of cellulases in Trichoderma viride.
    Berg B; Pettersson G
    J Appl Bacteriol; 1977 Feb; 42(1):65-75. PubMed ID: 558183
    [No Abstract]   [Full Text] [Related]  

  • 50. Competition between Phytophthora cinnamomi and Trichoderma spp. in autoclaved soil.
    Kelley WD; Rodriguez-Kabana R
    Can J Microbiol; 1976 Aug; 22(8):1120-7. PubMed ID: 9193
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Canola meal as a novel substrate for β-glucosidase production by Trichoderma viride: application of the crude extract to biomass saccharification.
    Almeida JM; Lima VA; Giloni-Lima PC; Knob A
    Bioprocess Biosyst Eng; 2015 Oct; 38(10):1889-902. PubMed ID: 26093658
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ultrastructure of the cell wall of Schizosaccharomyces pombe following treatment with various glucanases.
    Kopecká M; Fleet GH; Phaff HJ
    J Struct Biol; 1995; 114(2):140-52. PubMed ID: 7612397
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Exo-(1----3)-beta-glucanase, autolysin and trehalase activities during yeast growth and germ-tube formation in Candida albicans.
    Ram SP; Romana LK; Shepherd MG; Sullivan PA
    J Gen Microbiol; 1984 May; 130(5):1227-36. PubMed ID: 6147389
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of four purified extracellular 1,4-beta-D-glucan cellobiohydrolase enzymes from Trichoderma viride.
    Gum EK; Brown RD
    Biochim Biophys Acta; 1977 May; 492(1):225-31. PubMed ID: 405048
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cellulolytic enzyme system of Trichoderma koningii. Separation of components attacking native cotton.
    Wood TM
    Biochem J; 1968 Sep; 109(2):217-27. PubMed ID: 5692804
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [O-glycosylhydrolases of marine filamentous fungi. beta-1,3-Glucanases of Trichoderma aureviride].
    Burtseva IuV; Verigina NS; Sova VV; Pivkin MV; Zviagintseva TN
    Prikl Biokhim Mikrobiol; 2003; 39(5):542-8. PubMed ID: 14593867
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optimized microplate beta-1,3-glucanase assay system for Trichoderma spp. screening.
    Ramada MH; Lopes FA; Ulhoa CJ; Silva Rdo N
    J Microbiol Methods; 2010 Apr; 81(1):6-10. PubMed ID: 20096308
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Expression analysis of the exo-beta-1,3-glucanase from the mycoparasitic fungus Trichoderma asperellum.
    Marcello CM; Steindorff AS; da Silva SP; Silva Rdo N; Mendes Bataus LA; Ulhoa CJ
    Microbiol Res; 2010; 165(1):75-81. PubMed ID: 18804353
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Purification and properties of an induced beta-D-glucosidase from stachybotrys atra.
    de Gussem RL; Aerts GM; Claeyssens M; de Bruyne CK
    Biochim Biophys Acta; 1978 Jul; 525(1):142-53. PubMed ID: 28763
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Production and distribution of beta-glucosidase in a mutant strain Trichoderma viride T 100-14.
    Wang YH; Zhou J; Chu J; Qian JC; Zhang SL; Zhuang YP
    N Biotechnol; 2009 Oct; 26(3-4):150-6. PubMed ID: 19643211
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.