These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 6406674)

  • 1. Structure of oxidized flavodoxin from Anacystis nidulans.
    Smith WW; Pattridge KA; Ludwig ML; Petsko GA; Tsernoglou D; Tanaka M; Yasunobu KT
    J Mol Biol; 1983 Apr; 165(4):737-53. PubMed ID: 6406674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tertiary structure of oxidized flavodoxin from an eukaryotic red alga Chondrus crispus at 2.35-A resolution. Localization of charged residues and implication for interaction with electron transfer partners.
    Fukuyama K; Wakabayashi S; Matsubara H; Rogers LJ
    J Biol Chem; 1990 Sep; 265(26):15804-12. PubMed ID: 2394748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparisons of wild-type and mutant flavodoxins from Anacystis nidulans. Structural determinants of the redox potentials.
    Hoover DM; Drennan CL; Metzger AL; Osborne C; Weber CH; Pattridge KA; Ludwig ML
    J Mol Biol; 1999 Dec; 294(3):725-43. PubMed ID: 10610792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of oxidized flavodoxin from a red alga Chondrus crispus refined at 1.8 A resolution. Description of the flavin mononucleotide binding site.
    Fukuyama K; Matsubara H; Rogers LJ
    J Mol Biol; 1992 Jun; 225(3):775-89. PubMed ID: 1602481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the oxidized long-chain flavodoxin from Anabaena 7120 at 2 A resolution.
    Rao ST; Shaffie F; Yu C; Satyshur KA; Stockman BJ; Markley JL; Sundarlingam M
    Protein Sci; 1992 Nov; 1(11):1413-27. PubMed ID: 1303762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of oxidation-reduction potentials in flavodoxin from Clostridium beijerinckii: the role of conformation changes.
    Ludwig ML; Pattridge KA; Metzger AL; Dixon MM; Eren M; Feng Y; Swenson RP
    Biochemistry; 1997 Feb; 36(6):1259-80. PubMed ID: 9063874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the sequence which spans the beginning of the insertion region in Anacystis nidulans flavodoxin.
    Tarr GE
    J Mol Biol; 1983 Apr; 165(4):754-5. PubMed ID: 6406675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen-1, carbon-13, and nitrogen-15 NMR spectroscopy of Anabaena 7120 flavodoxin: assignment of beta-sheet and flavin binding site resonances and analysis of protein-flavin interactions.
    Stockman BJ; Krezel AM; Markley JL; Leonhardt KG; Straus NA
    Biochemistry; 1990 Oct; 29(41):9600-9. PubMed ID: 2125478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional NMR studies of the flavin binding site of Desulfovibrio vulgaris flavodoxin in its three redox states.
    Peelen S; Vervoort J
    Arch Biochem Biophys; 1994 Nov; 314(2):291-300. PubMed ID: 7979368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and oxidation-reduction behavior of 1-deaza-FMN flavodoxins: modulation of redox potentials in flavodoxins.
    Ludwig ML; Schopfer LM; Metzger AL; Pattridge KA; Massey V
    Biochemistry; 1990 Nov; 29(45):10364-75. PubMed ID: 2261478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of the radical form of clostridial flavodoxin: a new molecular model.
    Andersen RD; Apgar PA; Burnett RM; Darling GD; Lequesne ME; Mayhew SG; Ludwig ML
    Proc Natl Acad Sci U S A; 1972 Nov; 69(11):3189-91. PubMed ID: 4508314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-directed mutagenesis of tyrosine-98 in the flavodoxin from Desulfovibrio vulgaris (Hildenborough): regulation of oxidation-reduction properties of the bound FMN cofactor by aromatic, solvent, and electrostatic interactions.
    Swenson RP; Krey GD
    Biochemistry; 1994 Jul; 33(28):8505-14. PubMed ID: 8031784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cumulative electrostatic effect of aromatic stacking interactions and the negative electrostatic environment of the flavin mononucleotide binding site is a major determinant of the reduction potential for the flavodoxin from Desulfovibrio vulgaris [Hildenborough].
    Zhou Z; Swenson RP
    Biochemistry; 1996 Dec; 35(50):15980-8. PubMed ID: 8973168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and chemical properties of a flavodoxin from Anabaena PCC 7119.
    Fillat MF; Edmondson DE; Gomez-Moreno C
    Biochim Biophys Acta; 1990 Sep; 1040(2):301-7. PubMed ID: 2119231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of methionine 56 in the control of the oxidation-reduction potentials of the Clostridium beijerinckii flavodoxin: effects of substitutions by aliphatic amino acids and evidence for a role of sulfur-flavin interactions.
    Druhan LJ; Swenson RP
    Biochemistry; 1998 Jul; 37(27):9668-78. PubMed ID: 9657679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The binding of riboflavin-5'-phosphate in a flavoprotein: flavodoxin at 2.0-Angstrom resolution.
    Watenpaugh KD; Sieker LC; Jensen LH
    Proc Natl Acad Sci U S A; 1973 Dec; 70(12):3857-60. PubMed ID: 4521211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the electrostatic effect of the 5'-phosphate of the flavin mononucleotide cofactor on the oxidation--reduction potentials of the flavodoxin from desulfovibrio vulgaris (Hildenborough).
    Zhou Z; Swenson RP
    Biochemistry; 1996 Sep; 35(38):12443-54. PubMed ID: 8823179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The midpoint potentials for the oxidized-semiquinone couple for Gly57 mutants of the Clostridium beijerinckii flavodoxin correlate with changes in the hydrogen-bonding interaction with the proton on N(5) of the reduced flavin mononucleotide cofactor as measured by NMR chemical shift temperature dependencies.
    Chang FC; Swenson RP
    Biochemistry; 1999 Jun; 38(22):7168-76. PubMed ID: 10353827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR assignments, secondary structure and hydration of oxidized Escherichia coli flavodoxin.
    Ponstingl H; Otting G
    Eur J Biochem; 1997 Mar; 244(2):384-99. PubMed ID: 9119004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of the semiquinone form of flavodoxin from Clostridum MP. Extension of 1.8 A resolution and some comparisons with the oxidized state.
    Smith WW; Burnett RM; Darling GD; Ludwig ML
    J Mol Biol; 1977 Nov; 117(1):195-225. PubMed ID: 599565
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.