These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 6408065)
1. Role of L-lysine-alpha-ketoglutarate aminotransferase in catabolism of lysine as a nitrogen source for Rhodotorula glutinis. Kinzel JJ; Winston MK; Bhattacharjee JK J Bacteriol; 1983 Jul; 155(1):417-9. PubMed ID: 6408065 [TBL] [Abstract][Full Text] [Related]
2. Role of pipecolic acid in the biosynthesis of lysine in Rhodotorula glutinis. Kinzel JJ; Bhattacharjee JK J Bacteriol; 1979 May; 138(2):410-7. PubMed ID: 571433 [TBL] [Abstract][Full Text] [Related]
3. Biosynthesis of lysine in Rhodotorula glutinis: role of pipecolic acid. Kurtz M; Bhattacharjee JK J Gen Microbiol; 1975 Jan; 86(1):103-10. PubMed ID: 1167573 [TBL] [Abstract][Full Text] [Related]
4. Lysine biosynthesis in Rhodotorula glutinis: properties of pipecolic acid oxidase. Kinzel JJ; Bhattacharjee JK J Bacteriol; 1982 Sep; 151(3):1073-7. PubMed ID: 6809728 [TBL] [Abstract][Full Text] [Related]
5. Use of alpha-aminoadipate and lysine as sole nitrogen source by Schizosaccharomyces pombe and selected pathogenic fungi. Ye ZH; Garrad RC; Winston MK; Bhattacharjee JK J Basic Microbiol; 1991; 31(2):149-56. PubMed ID: 1908900 [TBL] [Abstract][Full Text] [Related]
6. Lysine is catabolized to 2-aminoadipic acid in Penicillium chrysogenum by an omega-aminotransferase and to saccharopine by a lysine 2-ketoglutarate reductase. Characterization of the omega-aminotransferase. Valmaseda EM; Campoy S; Naranjo L; Casqueiro J; Martín JF Mol Genet Genomics; 2005 Oct; 274(3):272-82. PubMed ID: 16049680 [TBL] [Abstract][Full Text] [Related]
7. Utilization of exogenous pyrimidines as a source of nitrogen by cells of the yeast Rhodotorula glutinis. Milstein OA; Bekker ML J Bacteriol; 1976 Jul; 127(1):1-6. PubMed ID: 945262 [TBL] [Abstract][Full Text] [Related]
8. Induction of L-phenylalanine ammonia-lyase during utilization of phenylalanine as a carbon or nitrogen source in Rhodotorula glutinis. Marusich WC; Jensen RA; Zamir LO J Bacteriol; 1981 Jun; 146(3):1013-9. PubMed ID: 7195398 [TBL] [Abstract][Full Text] [Related]
9. The route of lysine breakdown in Candida tropicalis. Large PJ; Robertson A FEMS Microbiol Lett; 1991 Aug; 66(2):209-13. PubMed ID: 1682209 [TBL] [Abstract][Full Text] [Related]
11. Some properties of the adenosine triphosphatase systems of two yeast species, Saccharomyces cerevisiae and Rhodotorula glutinis. Sigler K; Kotyk A Mol Cell Biochem; 1976 Aug; 12(2):73-9. PubMed ID: 8702 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the oat1 gene of Penicillium chrysogenum encoding an omega-aminotransferase: induction by L-lysine, L-ornithine and L-arginine and repression by ammonium. Naranjo L; Lamas-Maceiras M; Ullán RV; Campoy S; Teijeira F; Casqueiro J; Martín JF Mol Genet Genomics; 2005 Oct; 274(3):283-94. PubMed ID: 16163487 [TBL] [Abstract][Full Text] [Related]
13. Markedly different ascorbate dependencies of the sequential alpha-ketoglutarate dioxygenase reactions catalyzed by an essentially homogeneous thymine 7-hydroxylase from Rhodotorula glutinis. Warn-Cramer BJ; Macrander LA; Abbott MT J Biol Chem; 1983 Sep; 258(17):10551-7. PubMed ID: 6684117 [TBL] [Abstract][Full Text] [Related]
14. Inactivation of the lys7 gene, encoding saccharopine reductase in Penicillium chrysogenum, leads to accumulation of the secondary metabolite precursors piperideine-6-carboxylic acid and pipecolic acid from alpha-aminoadipic acid. Naranjo L; Martín de Valmaseda E; Casqueiro J; Ullán RV; Lamas-Maceiras M; Bañuelos O; Martín JF Appl Environ Microbiol; 2004 Feb; 70(2):1031-9. PubMed ID: 14766586 [TBL] [Abstract][Full Text] [Related]
16. 6-phosphofructo-1-kinase from the lipid accumulating, non-fermentative, red yeast Rhodotorula glutinis. Schröter A; Kopperschläger G FEMS Microbiol Lett; 1996 Sep; 142(2-3):247-52. PubMed ID: 8810508 [TBL] [Abstract][Full Text] [Related]
17. Identification of two alpha-ketoglutarate-dependent dioxygenases in extracts of Rhodotorula glutinis catalyzing deoxyuridine hydroxylation. Stubbe J J Biol Chem; 1985 Aug; 260(18):9972-5. PubMed ID: 4040518 [TBL] [Abstract][Full Text] [Related]
18. Metabolism of lysine in alpha-aminoadipic semialdehyde dehydrogenase-deficient fibroblasts: evidence for an alternative pathway of pipecolic acid formation. Struys EA; Jakobs C FEBS Lett; 2010 Jan; 584(1):181-6. PubMed ID: 19932104 [TBL] [Abstract][Full Text] [Related]
19. Function of carbohydrate moiety in acid phosphatase of Rhodotorula glutinis. Watorek W; Morawiecka B Acta Biochim Pol; 1984; 31(2):217-21. PubMed ID: 6541413 [TBL] [Abstract][Full Text] [Related]
20. Characterization of a carboxypeptidase from the yeast Rhodotorula glutinis. Hernández-Jodra M; Gancedo C Hoppe Seylers Z Physiol Chem; 1979 Apr; 360(4):581-6. PubMed ID: 571399 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]