These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 6409410)

  • 1. Effects of adrenaline on a compartment of slowly-exchangeable calcium in the perfused rat heart.
    Lamont SV; Barritt GJ
    Cardiovasc Res; 1983 Feb; 17(2):88-95. PubMed ID: 6409410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A kinetic analysis of the effects of adrenaline on calcium distribution in isolated rat liver parenchymal cells.
    Barritt GJ; Parker JC; Wadsworth JC
    J Physiol; 1981 Mar; 312():29-55. PubMed ID: 7264996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A kinetic investigation of the effects of adrenaline on 45Ca2+ exchange in isolated hepatocytes at different Ca2+ concentrations, at 20 degrees C and in the presence of inhibitors of mitochondrial Ca2+ transport.
    Parker JC; Barritt GJ; Wadsworth JC
    Biochem J; 1983 Oct; 216(1):51-62. PubMed ID: 6651779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of rapidly exchangeable cellular calcium in the perfused beating rat heart.
    Hunter DR; Haworth RA; Berkoff HA
    Proc Natl Acad Sci U S A; 1981 Sep; 78(9):5665-8. PubMed ID: 6946505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Ca2+ ions in the regulation of intramitochondrial metabolism in rat heart. Evidence from studies with isolated mitochondria that adrenaline activates the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes by increasing the intramitochondrial concentration of Ca2+.
    McCormack JG; Denton RM
    Biochem J; 1984 Feb; 218(1):235-47. PubMed ID: 6424656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The alpha-adrenergic-mediated activation of Ca2+ influx into cardiac mitochondria. A possible mechanism for the regulation of intramitochondrial free CA2+.
    Kessar P; Crompton M
    Biochem J; 1981 Nov; 200(2):379-88. PubMed ID: 7340837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic properties of exchangeable calcium in guinea-pig heart mitochondria measured at low concentrations of free calcium and in the presence of Mg2+, ATP4- and inorganic phosphate.
    Barritt GJ; Lamont SV
    Cell Calcium; 1982 Aug; 3(3):215-25. PubMed ID: 6890411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyrophosphate metabolism in the perfused heart and isolated heart mitochondria and its role in regulation of mitochondrial function by calcium.
    Griffiths EJ; Halestrap AP
    Biochem J; 1993 Mar; 290 ( Pt 2)(Pt 2):489-95. PubMed ID: 8383966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium compartmentation and exchange rates in primary hepatocyte culture.
    Gish RG; Garcia C; Reedy T; Kaplowitz N; Langer GA
    Anal Biochem; 1990 May; 187(1):187-96. PubMed ID: 2372115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that glucagon acts on the liver to decrease mitochondrial calcium stores.
    Baddams HM; Chang LB; Barritt GJ
    Biochem J; 1983 Jan; 210(1):73-7. PubMed ID: 6405743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid, non-perfusion-limited calcium exchange in cultured neonatal myocardial cells.
    Kuwata JH; Langer GA
    J Mol Cell Cardiol; 1989 Nov; 21(11):1195-208. PubMed ID: 2607548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The alpha-adrenergic-mediated activation of the cardiac mitochondrial Ca2+ uniporter and its role in the control of intramitochondrial Ca2+ in vivo.
    Crompton M; Kessar P; Al-Nasser I
    Biochem J; 1983 Nov; 216(2):333-42. PubMed ID: 6661200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The loading of fura-2 into mitochondria in the intact perfused rat heart and its use to estimate matrix Ca2+ under various conditions.
    Allen SP; Stone D; McCormack JG
    J Mol Cell Cardiol; 1992 Jul; 24(7):765-73. PubMed ID: 1383555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Actions of adrenaline on the potassium balance of the isolated heart.
    Stafford A
    Br J Pharmacol; 1969 Jul; 36(3):571-81. PubMed ID: 5789810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence that concentrations of ouabain which induce positive inotropic effects on the perfused guinea-pig heart increase the amount of calcium in a rapidly-exchangeable cellular compartment.
    Maitland PC; Lamont SV; Barritt GJ
    Biochem Pharmacol; 1982 Aug; 31(15):2471-8. PubMed ID: 6812591
    [No Abstract]   [Full Text] [Related]  

  • 16. Calcium compartmentation in cardiac tissue culture: the effects of extracellular sodium depletion.
    Langer GA; Nudd LM
    J Mol Cell Cardiol; 1984 Nov; 16(11):1047-57. PubMed ID: 6097693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular [Ca2+] staircase in the isovolumic pressure--frequency relationship of Langendorff-perfused rat heart.
    Field ML; Azzawi A; Unitt JF; Seymour AM; Henderson C; Radda GK
    J Mol Cell Cardiol; 1996 Jan; 28(1):65-77. PubMed ID: 8745215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium fluxes in the neonatal canine myocardium: the effects of isoproterenol and electrical stimulation.
    Lodge NJ; Bassett AL; Gelband H
    Dev Pharmacol Ther; 1987; 10(4):233-44. PubMed ID: 3608748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The activation of pyruvate dehydrogenase in the perfused rat heart by adrenaline and other inotropic agents.
    McCormack JG; Denton RM
    Biochem J; 1981 Feb; 194(2):639-43. PubMed ID: 7306008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subcellular Ca2+ distribution with varying Ca2+ load in neonatal cardiac cell culture.
    Winka LL; Wang SY; Langer GA
    Biophys J; 1999 May; 76(5):2649-63. PubMed ID: 10233079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.