These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 6410308)

  • 1. Inhibition of norepinephrine autoxidation by a rat brain cortical factor.
    Kovachich GB; Mishra OP
    Neurosci Lett; 1983 May; 37(1):63-8. PubMed ID: 6410308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of ascorbate autoxidation by a rat brain cortical factor.
    Kovachich GB; Mishra OP
    Neurosci Lett; 1982 Dec; 34(1):83-7. PubMed ID: 7162700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of the autoxidation of ascorbate and norepinephrine by extracts of Clostridium butyricum, Megasphaera elsdenii and Escherichia coli.
    Mishra OP; Kovachich GB
    Life Sci; 1984 Aug; 35(8):849-54. PubMed ID: 6384713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization of ascorbic acid and norepinephrine in vitro by the subcellular fractions of rat cerebral cortex.
    Kovachich GB; Mishra OP
    Neurosci Lett; 1984 Nov; 52(1-2):153-8. PubMed ID: 6527832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation by 6-hydroxydopamine of the cerebral factor(s) responsible for the inhibition of the autoxidation of norepinephrine in vitro.
    Kovachich GB
    Neurosci Lett; 1985 Jul; 58(2):245-50. PubMed ID: 3931006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of ascorbate autoxidation by a dialyzed, heat-denatured extract of plant tissues.
    Mishra OP; Kovachich GB
    Life Sci; 1984 May; 34(22):2207-12. PubMed ID: 6727559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of ascorbate autoxidation by the dialyzed soluble fraction of mammalian nervous tissues.
    Mishra OP; Kovachich GB
    Neurosci Lett; 1983 Dec; 43(1):103-8. PubMed ID: 6669317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of catecholamine metabolism in synaptosomes by a neuroregulatory factor from mammalian brain.
    Pastuszko A; Yee DK; Wilson DF
    Neurosci Lett; 1989 Mar; 98(1):111-7. PubMed ID: 2710394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. S-nitrosothiols and the nitrergic neurotransmitter in the rat gastric fundus: effect of antioxidants and metal chelation.
    De Man JG; De Winter BY; Moreels TG; Herman AG; Pelckmans PA
    Br J Pharmacol; 1998 Mar; 123(6):1039-46. PubMed ID: 9559884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antioxidant properties of dimethyl sulfoxide and its viability as a solvent in the evaluation of neuroprotective antioxidants.
    Sanmartín-Suárez C; Soto-Otero R; Sánchez-Sellero I; Méndez-Álvarez E
    J Pharmacol Toxicol Methods; 2011; 63(2):209-15. PubMed ID: 21059397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of serotonin with the catecholamines. I. Inhibition of dopamine and norepinephrine oxidation.
    Vander Wende C; Johnson JC
    Biochem Pharmacol; 1970 Jun; 19(6):1991-2000. PubMed ID: 4998462
    [No Abstract]   [Full Text] [Related]  

  • 12. Antioxidant properties of S-adenosyl-L-methionine in Fe(2+)-initiated oxidations.
    Caro AA; Cederbaum AI
    Free Radic Biol Med; 2004 May; 36(10):1303-16. PubMed ID: 15110395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The protective effect of superoxide dismutase and catalase against formation of reactive oxygen species during reduction of cyclized norepinephrine ortho-quinone by DT-diaphorase.
    Linderson Y; Baez S; Segura-Aguilar J
    Biochim Biophys Acta; 1994 Jul; 1200(2):197-204. PubMed ID: 8031841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron- and peroxide-dependent conjugation of dopamine with cysteine: oxidative routes to the novel brain metabolite 5-S-cysteinyldopamine.
    Palumbo A; d'Ischia M; Misuraca G; De Martino L; Prota G
    Biochim Biophys Acta; 1995 Oct; 1245(2):255-61. PubMed ID: 7492586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between metals, ligands, and oxygen in the autoxidation of 6-hydroxydopamine: mechanisms by which metal chelation enhances inhibition by superoxide dismutase.
    Bandy B; Davison AJ
    Arch Biochem Biophys; 1987 Dec; 259(2):305-15. PubMed ID: 3122661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH dependence of [3H]norepinephrine uptake into catecholamine storage vesicles isolated from rat brain, heart and adrenal medulla.
    Evoniuk G; Slotkin TA
    Biochem Pharmacol; 1981 Oct; 30(20):2872-3. PubMed ID: 7317082
    [No Abstract]   [Full Text] [Related]  

  • 17. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method.
    Apak R; Güçlü K; Ozyürek M; Karademir SE
    J Agric Food Chem; 2004 Dec; 52(26):7970-81. PubMed ID: 15612784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ascorbic acid-like effect of the soluble fraction of rat brain on adenosine triphosphatases and its relation to catecholamines and chelating agents.
    Schaefer A; Seregi A; Komlós M
    Biochem Pharmacol; 1974 Aug; 23(16):2257-71. PubMed ID: 4368431
    [No Abstract]   [Full Text] [Related]  

  • 19. Antioxidant capacity of desferrioxamine in biological systems.
    Videla LA; Villena MI; Salgado C; Canales P; Lissi EA
    Biochem Int; 1987 Jul; 15(1):205-14. PubMed ID: 3453687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ferrous ion-EDTA-stimulated phospholipid peroxidation. A reaction changing from alkoxyl-radical- to hydroxyl-radical-dependent initiation.
    Gutteridge JM
    Biochem J; 1984 Dec; 224(3):697-701. PubMed ID: 6441569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.