BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 6410668)

  • 1. Carbon dioxide elimination after acetazolamide in patients with chronic obstructive pulmonary disease and metabolic alkalosis.
    Krintel JJ; Haxholdt OS; Berthelsen P; Brøckner J
    Acta Anaesthesiol Scand; 1983 Jun; 27(3):252-4. PubMed ID: 6410668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen uptake and carbon dioxide elimination after acetazolamide in the critically ill.
    Berthelsen P; Gøthgen I; Husum B; Jacobsen E
    Intensive Care Med; 1985; 11(1):26-9. PubMed ID: 3918091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetazolamide improves oxygenation in patients with respiratory failure and metabolic alkalosis.
    Gulsvik R; Skjørten I; Undhjem K; Holø L; Frostad A; Saure EW; Lejlic V; Humerfelt S; Hansen G; Bruun Wyller T
    Clin Respir J; 2013 Oct; 7(4):390-6. PubMed ID: 23578004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disturbance of CO2 elimination in the lungs by carbonic anhydrase inhibition.
    Taki K; Mizuno K; Takahashi N; Wakusawa R
    Jpn J Physiol; 1986; 36(3):523-32. PubMed ID: 3095576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of acetazolamide and furosemide on ventilation and cerebral blood volume in normocapnic and hypercapnic patients with COPD.
    van de Ven MJ; Colier WN; van der Sluijs MC; Oeseburg B; Vis P; Folgering H
    Chest; 2002 Feb; 121(2):383-92. PubMed ID: 11834647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Acetazolamide vs Placebo on Duration of Invasive Mechanical Ventilation Among Patients With Chronic Obstructive Pulmonary Disease: A Randomized Clinical Trial.
    Faisy C; Meziani F; Planquette B; Clavel M; Gacouin A; Bornstain C; Schneider F; Duguet A; Gibot S; Lerolle N; Ricard JD; Sanchez O; Djibre M; Ricome JL; Rabbat A; Heming N; Urien S; Esvan M; Katsahian S;
    JAMA; 2016 Feb; 315(5):480-8. PubMed ID: 26836730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetazolamide-mediated decrease in strong ion difference accounts for the correction of metabolic alkalosis in critically ill patients.
    Moviat M; Pickkers P; van der Voort PH; van der Hoeven JG
    Crit Care; 2006 Feb; 10(1):R14. PubMed ID: 16420662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acetazolamide: a second wind for a respiratory stimulant in the intensive care unit?
    Heming N; Urien S; Faisy C
    Crit Care; 2012 Aug; 16(4):318. PubMed ID: 22866939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiovascular performance and oxyhemoglobin dissociation after acetazolamide in metabolic alkalosis.
    Berthelsen P
    Intensive Care Med; 1982; 8(6):269-74. PubMed ID: 6816846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute metabolic alkalosis perpetuating hypercarbia. A role for acetazolamide in chronic obstructive pulmonary disease.
    Miller PD; Berns AS
    JAMA; 1977 Nov; 238(22):2400-1. PubMed ID: 578870
    [No Abstract]   [Full Text] [Related]  

  • 11. Single versus multiple doses of acetazolamide for metabolic alkalosis in critically ill medical patients: a randomized, double-blind trial.
    Mazur JE; Devlin JW; Peters MJ; Jankowski MA; Iannuzzi MC; Zarowitz BJ
    Crit Care Med; 1999 Jul; 27(7):1257-61. PubMed ID: 10446816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Acetazolamide in hypercapnic chronic obstructive lung disease--a renaissance?].
    Häcki MA; Waldeck G; Brändli O
    Schweiz Med Wochenschr; 1983 Jan; 113(3):110-4. PubMed ID: 6828842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Respiratory function and carbonic anhydrase inhibition.
    Berthelsen PG; Dich-Nielsen JO
    Intensive Care Med; 1987; 13(5):323-7. PubMed ID: 3116060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of metabolic alkalosis on respiratory function in patients with chronic obstructive lung disease.
    Bear R; Goldstein M; Phillipson E; Ho M; Hammeke M; Feldman R; Handelsman S; Halperin M
    Can Med Assoc J; 1977 Oct; 117(8):900-3. PubMed ID: 21028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retention of carbon dioxide in tissue following carbonic anhydrase inhibition in dogs.
    Taki K; Hirahara K; Totoki T; Takahashi N
    Clin Ther; 1993; 15(5):884-9. PubMed ID: 8269455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of carbonic anhydrase inhibition on ventilation-perfusion matching in the dog lung.
    Swenson ER; Robertson HT; Hlastala MP
    J Clin Invest; 1993 Aug; 92(2):702-9. PubMed ID: 8349809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Population pharmacodynamic model of bicarbonate response to acetazolamide in mechanically ventilated chronic obstructive pulmonary disease patients.
    Heming N; Faisy C; Urien S
    Crit Care; 2011; 15(5):R213. PubMed ID: 21917139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalysis of CO2 reactions by lung carbonic anhydrase.
    Klocke RA
    J Appl Physiol Respir Environ Exerc Physiol; 1978 Jun; 44(6):882-8. PubMed ID: 97250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of CO2 excretion and intravascular pH disequilibria during carbonic anhydrase inhibition.
    Cardenas V; Heming TA; Bidani A
    J Appl Physiol (1985); 1998 Feb; 84(2):683-94. PubMed ID: 9475881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acetazolamide Use in Severe Chronic Obstructive Pulmonary Disease. Pros and Cons.
    Adamson R; Swenson ER
    Ann Am Thorac Soc; 2017 Jul; 14(7):1086-1093. PubMed ID: 28622013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.