BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 6410989)

  • 1. Cyanide production by Pseudomonas fluorescens and Pseudomonas aeruginosa.
    Askeland RA; Morrison SM
    Appl Environ Microbiol; 1983 Jun; 45(6):1802-7. PubMed ID: 6410989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen cyanide production by Pseudomonas aeruginosa at reduced oxygen levels.
    Castric PA
    Can J Microbiol; 1983 Oct; 29(10):1344-9. PubMed ID: 6318940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycine metabolism by Pseudomonas aeruginosa: hydrogen cyanide biosynthesis.
    Castric PA
    J Bacteriol; 1977 May; 130(2):826-31. PubMed ID: 233722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen cyanide, a secondary metabolite of Pseudomonas aeruginosa.
    Castric PA
    Can J Microbiol; 1975 May; 21(5):613-18. PubMed ID: 164997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of iron and phosphate on bacterial cyanide formation determined by methemoglobin in two-dimensional gradient microcultivations.
    Rudolf von Rohr M; Furrer G; Brandl H
    J Microbiol Methods; 2009 Oct; 79(1):71-5. PubMed ID: 19703501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The destruction of cyanides and their metal complexes by natural bacterial trains].
    Garbara SV; Ul'berg ZR; Grishchenko NI; Podol'skaia VI
    Mikrobiol Zh (1978); 1992; 54(3):44-8. PubMed ID: 1435357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of inorganic phosphate on cyanogenesis by Pseudomonas aeruginosa.
    Meganathan R; Castric PA
    Arch Microbiol; 1977 Jul; 114(1):51-4. PubMed ID: 20863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of sulfide to nitrate ratios on the strains coupling nitrogen removal from wastewater and hydrogen sulfide removal from biogas].
    Chen ZA; Deng LW; He L
    Huan Jing Ke Xue; 2011 May; 32(5):1394-401. PubMed ID: 21780597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the hcnABC gene cluster encoding hydrogen cyanide synthase and anaerobic regulation by ANR in the strictly aerobic biocontrol agent Pseudomonas fluorescens CHA0.
    Laville J; Blumer C; Von Schroetter C; Gaia V; Défago G; Keel C; Haas D
    J Bacteriol; 1998 Jun; 180(12):3187-96. PubMed ID: 9620970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Treatment of metal cyanide bearing wastewater by simultaneous adsorption and biodegradation (SAB).
    Dash RR; Balomajumder C; Kumar A
    J Hazard Mater; 2008 Mar; 152(1):387-96. PubMed ID: 17706348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyanide produced by human isolates of Pseudomonas aeruginosa contributes to lethality in Drosophila melanogaster.
    Broderick KE; Chan A; Balasubramanian M; Feala J; Reed SL; Panda M; Sharma VS; Pilz RB; Bigby TD; Boss GR
    J Infect Dis; 2008 Feb; 197(3):457-64. PubMed ID: 18199034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variation in hydrogen cyanide production between different strains of Pseudomonas aeruginosa.
    Gilchrist FJ; Alcock A; Belcher J; Brady M; Jones A; Smith D; Spanĕl P; Webb K; Lenney W
    Eur Respir J; 2011 Aug; 38(2):409-14. PubMed ID: 21273393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyanide utilization and degradation by microorganisms.
    Knowles CJ
    Ciba Found Symp; 1988; 140():3-15. PubMed ID: 3073060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accumulation of alpha-keto acids as essential components in cyanide assimilation by Pseudomonas fluorescens NCIMB 11764.
    Kunz DA; Chen JL; Pan G
    Appl Environ Microbiol; 1998 Nov; 64(11):4452-9. PubMed ID: 9797306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of yield and maintenance coefficients, expressed in carbon units, for Pseudomonas fluorescens and P. aeruginosa.
    Verstraete W; Voets JP
    Z Allg Mikrobiol; 1978; 18(2):135-41. PubMed ID: 96619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of different carbon sources for growth and biosurfactant production by Pseudomonas fluorescens isolated from wastewaters.
    Stoimenova E; Vasileva-Tonkova E; Sotirova A; Galabova D; Lalchev Z
    Z Naturforsch C J Biosci; 2009; 64(1-2):96-102. PubMed ID: 19323273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Indigenous microflora responses to introduction of cyanogenic strains of Pseudomonas fluorescens into soil.
    Piotrowska-Seget Z; Kozdrój J
    Acta Microbiol Pol; 1999; 48(1):73-8. PubMed ID: 10467697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation of phenol by bacterial strains from petroleum-refining wastewater purification plant.
    Pakuła A; Bieszkiewicz E; Boszczyk-Maleszak H; Mycielski R
    Acta Microbiol Pol; 1999; 48(4):373-80. PubMed ID: 10756720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of Pseudomonas aeruginosa rhodanese in protection from cyanide toxicity.
    Cipollone R; Frangipani E; Tiburzi F; Imperi F; Ascenzi P; Visca P
    Appl Environ Microbiol; 2007 Jan; 73(2):390-8. PubMed ID: 17098912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ferripyoverdine receptor FpvA of Pseudomonas aeruginosa PAO1 recognizes the ferripyoverdines of P. aeruginosa PAO1 and P. fluorescens ATCC 13525.
    Meyer JM; Stintzi A; Poole K
    FEMS Microbiol Lett; 1999 Jan; 170(1):145-50. PubMed ID: 9919663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.