BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 6411710)

  • 1. The active site regions of lacZ and ebg beta-galactosidases are homologous.
    Fowler AV; Smith PJ
    J Biol Chem; 1983 Sep; 258(17):10204-7. PubMed ID: 6411710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Affinity labelling with a deaminatively generated carbonium ion. Kinetics and stoicheiometry of the alkylation of methionine-500 of the lacZ beta-galactosidase of Escherichia coli by beta-D-galactopyranosylmethyl-p-nitrophenyltriazene.
    Sinnott ML; Smith PJ
    Biochem J; 1978 Nov; 175(2):525-38. PubMed ID: 105721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The catalytic consequences of experimental evolution. Studies on the subunit structure of the second (ebg) beta-galactosidase of Escherichia coli, and on catalysis by ebgab, an experimental evolvant containing two amino acid substitutions.
    Elliott AC; K S; Sinnott ML; Smith PJ; Bommuswamy J; Guo Z; Hall BG; Zhang Y
    Biochem J; 1992 Feb; 282 ( Pt 1)(Pt 1):155-64. PubMed ID: 1540130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression and nucleotide sequence of the Lactobacillus bulgaricus beta-galactosidase gene cloned in Escherichia coli.
    Schmidt BF; Adams RM; Requadt C; Power S; Mainzer SE
    J Bacteriol; 1989 Feb; 171(2):625-35. PubMed ID: 2492511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalysis by the large subunit of the second beta-galactosidase of Escherichia coli in the absence of the small subunit.
    Calugaru SV; Hall BG; Sinnott ML
    Biochem J; 1995 Nov; 312 ( Pt 1)(Pt 1):281-6. PubMed ID: 7492325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental evolution of Ebg enzyme provides clues about the evolution of catalysis and to evolutionary potential.
    Hall BG
    FEMS Microbiol Lett; 1999 May; 174(1):1-8. PubMed ID: 10234816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determining the evolutionary potential of a gene.
    Hall BG; Malik HS
    Mol Biol Evol; 1998 Aug; 15(8):1055-61. PubMed ID: 9718732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Positions of early nonsense and deletion mutations in lacZ.
    Welply JK; Fowler AV; Beckwith JR; Zabin I
    J Bacteriol; 1980 May; 142(2):732-4. PubMed ID: 6769904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in the substrate specificities of an enzyme during directed evolution of new functions.
    Hall BG
    Biochemistry; 1981 Jul; 20(14):4042-9. PubMed ID: 6793063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of amino acid substitutions at the active site in Escherichia coli beta-galactosidase.
    Cupples CG; Miller JH
    Genetics; 1988 Nov; 120(3):637-44. PubMed ID: 2906303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental evolution of a new enzymatic function. II. Evolution of multiple functions for ebg enzyme in E. coli.
    Hall BG
    Genetics; 1978 Jul; 89(3):453-65. PubMed ID: 97169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence of the lacZ gene of Escherichia coli.
    Kalnins A; Otto K; Rüther U; Müller-Hill B
    EMBO J; 1983; 2(4):593-7. PubMed ID: 6313347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Position of the mutation in beta-galactosidase ochre mutant U118.
    Zabin I; Fowler AV; Beckwith JR
    J Bacteriol; 1978 Jan; 133(1):437-8. PubMed ID: 412841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of a new enzymatic function by recombination within a gene.
    Hall BG; Zuzel T
    Proc Natl Acad Sci U S A; 1980 Jun; 77(6):3529-33. PubMed ID: 6774339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sites within gene lacZ of Escherichia coli for formation of active hybrid beta-galactosidase molecules.
    Brickman E; Silhavy TJ; Bassford PJ; Shuman HA; Beckwith JR
    J Bacteriol; 1979 Jul; 139(1):13-8. PubMed ID: 110776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The catalytic consequences of experimental evolution. Transition-state structure during catalysis by the evolved beta-galactosidases of Escherichia coli (ebg enzymes) changed by a single mutational event.
    Li BF; Holdup D; Morton CA; Sinnott ML
    Biochem J; 1989 May; 260(1):109-14. PubMed ID: 2505746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA sequence analysis of artificially evolved ebg enzyme and ebg repressor genes.
    Hall BG; Betts PW; Wootton JC
    Genetics; 1989 Dec; 123(4):635-48. PubMed ID: 2515108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a psychrotrophic Arthrobacter gene and its cold-active beta-galactosidase.
    Trimbur DE; Gutshall KR; Prema P; Brenchley JE
    Appl Environ Microbiol; 1994 Dec; 60(12):4544-52. PubMed ID: 7811090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A solvent-isotope-effect study of proton transfer during catalysis by Escherichia coli (lacZ) beta-galactosidase.
    Selwood T; Sinnott ML
    Biochem J; 1990 Jun; 268(2):317-23. PubMed ID: 2114090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ebg operon consists of at least two genes.
    Hall BG; Zuzel T
    J Bacteriol; 1980 Dec; 144(3):1208-11. PubMed ID: 6254948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.