These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 641221)
1. An autoradiographic study of midbrain-diencephalic projections to the inferior olivary nucleus in the opossum (Didelphis virginiana). Linauts M; Martin GF J Comp Neurol; 1978 May; 179(2):325-53. PubMed ID: 641221 [TBL] [Abstract][Full Text] [Related]
2. Olivary projections from the mesodiencephalic structures in the cat studied by means of axonal transport of horseradish peroxidase and tritiated amino acids. Onodera S J Comp Neurol; 1984 Jul; 227(1):37-49. PubMed ID: 6470209 [TBL] [Abstract][Full Text] [Related]
3. The synaptic terminations of certain midbrain-olivary fibers in the opossum. King JS; Hamos JE; Maley BE J Comp Neurol; 1978 Nov; 182(2):185-99. PubMed ID: 701491 [TBL] [Abstract][Full Text] [Related]
4. A reevaluation of midbrain and diencephalic projections to the inferior olive in rat with particular reference to the rubro-olivary pathway. Rutherford JG; Anderson WA; Gwyn DG J Comp Neurol; 1984 Oct; 229(2):285-300. PubMed ID: 6209303 [TBL] [Abstract][Full Text] [Related]
5. Pretectal and brain stem projections of the medial terminal nucleus of the accessory optic system of the rabbit and rat as studied by anterograde and retrograde neuronal tracing methods. Giolli RA; Blanks RH; Torigoe Y J Comp Neurol; 1984 Aug; 227(2):228-51. PubMed ID: 6470215 [TBL] [Abstract][Full Text] [Related]
6. Projections of medial terminal accessory optic nucleus, ventral tegmental nuclei, and substantia nigra of rabbit and rat as studied by retrograde axonal transport of horseradish peroxidase. Giolli RA; Blanks RH; Torigoe Y; Williams DD J Comp Neurol; 1985 Feb; 232(1):99-116. PubMed ID: 3973086 [TBL] [Abstract][Full Text] [Related]
7. Sources of descending afferents to the inferior olive from the upper brain stem in the cat as revealed by the retrograde transport of horseradish peroxidase. Saint-Cyr JA; Courville J J Comp Neurol; 1981 Jun; 198(4):567-81. PubMed ID: 7251931 [TBL] [Abstract][Full Text] [Related]
8. Anatomical organization of cortico-mesencephalo-olivary pathways in the cat as demonstrated by axonal transport techniques. Saint-Cyr JA J Comp Neurol; 1987 Mar; 257(1):39-59. PubMed ID: 2437162 [TBL] [Abstract][Full Text] [Related]
9. The organization of olivo-cerebellar projections in the opossum, Didelphis virginiana, as revealed by the retrograde transport of horseradish peroxidase. Linauts M; Martin GF J Comp Neurol; 1978 May; 179(2):355-81. PubMed ID: 641222 [TBL] [Abstract][Full Text] [Related]
10. Comparative topography of projections from the mesodiencephalic junction to the inferior olive, vestibular nuclei, and upper cervical cord in the cat. Spence SJ; Saint-Cyr JA J Comp Neurol; 1988 Feb; 268(3):357-74. PubMed ID: 3360994 [TBL] [Abstract][Full Text] [Related]
11. The inferior olivary nucleus of the opossum (Didelphis marsupialis virginiana), its organization and connections. Martin GF; Dom R; King JS; RoBards M; Watson CR J Comp Neurol; 1975 Apr; 160(4):507-33. PubMed ID: 1123465 [TBL] [Abstract][Full Text] [Related]
12. An autoradiographic study of the rubroolivary tract in the rhesus monkey. Strominger NL; Truscott TC; Miller RA; Royce GJ J Comp Neurol; 1979 Jan; 183(1):33-45. PubMed ID: 102667 [TBL] [Abstract][Full Text] [Related]
13. The cells of origin of the incertofugal projections to the tectum, thalamus, tegmentum and spinal cord in the rat: a study using the autoradiographic and horseradish peroxidase methods. Watanabe K; Kawana E Neuroscience; 1982 Oct; 7(10):2389-2406. PubMed ID: 7177380 [TBL] [Abstract][Full Text] [Related]
14. The vestibular complex of the American opossum didelphis virginiana. II. Afferent and efferent connections. Henkel CK; Martin GF J Comp Neurol; 1977 Mar; 172(2):321-48. PubMed ID: 65367 [TBL] [Abstract][Full Text] [Related]
15. Descending projections to the inferior olive from the mesencephalon and superior colliculus in the cat. An autoradiographic study. Saint-Cyr JA; Courville J Exp Brain Res; 1982; 45(3):333-48. PubMed ID: 7067770 [TBL] [Abstract][Full Text] [Related]
16. Optic tectum of the eastern garter snake, Thamnophis sirtalis. V. Morphology of brainstem afferents and general discussion. Dacey DM; Ulinski PS J Comp Neurol; 1986 Mar; 245(4):423-53. PubMed ID: 3700709 [TBL] [Abstract][Full Text] [Related]
17. Frontal eye field efferents in the macaque monkey: II. Topography of terminal fields in midbrain and pons. Stanton GB; Goldberg ME; Bruce CJ J Comp Neurol; 1988 May; 271(4):493-506. PubMed ID: 2454971 [TBL] [Abstract][Full Text] [Related]
18. Projections of nucleus caudalis and spinal cord to brainstem and diencephalon in the hedgehog (Erinaceus europaeus and Paraechinus aethiopicus): a degeneration study. Ring G; Ganchrow D J Comp Neurol; 1983 May; 216(2):132-51. PubMed ID: 6863599 [TBL] [Abstract][Full Text] [Related]
19. Cerebellar nucleo-olivary projections in the rat: an anterograde tracing study with Phaseolus vulgaris-leucoagglutinin (PHA-L). Ruigrok TJ; Voogd J J Comp Neurol; 1990 Aug; 298(3):315-33. PubMed ID: 2212106 [TBL] [Abstract][Full Text] [Related]
20. Projections of the lateral terminal accessory optic nucleus of the common marmoset (Callithrix jacchus). Blanks RH; Clarke RJ; Lui F; Giolli RA; Van Pham S; Torigoe Y J Comp Neurol; 1995 Apr; 354(4):511-32. PubMed ID: 7608336 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]