These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 641242)
1. Effect of technical grade pentachlorophenol on rumen microorganisms. Shull LR; McCarthy SK J Dairy Sci; 1978 Feb; 61(2):260-2. PubMed ID: 641242 [TBL] [Abstract][Full Text] [Related]
2. Interaction of molasses and monensin in alfalfa hay- or corn silage-based diets on rumen fermentation, total tract digestibility, and milk production by Holstein cows. Oelker ER; Reveneau C; Firkins JL J Dairy Sci; 2009 Jan; 92(1):270-85. PubMed ID: 19109286 [TBL] [Abstract][Full Text] [Related]
3. Sensitivity of ruminal microorganisms to pentachlorophenol. Yokoyama MT; Johnson KA; Gierzak J Appl Environ Microbiol; 1988 Nov; 54(11):2619-24. PubMed ID: 3214151 [TBL] [Abstract][Full Text] [Related]
4. Effects of fumarate on ruminal ammonia accumulation and fiber digestion in vitro and nutrient utilization in dairy does. Yu CW; Chen YS; Cheng YH; Cheng YS; Yang CM; Chang CT J Dairy Sci; 2010 Feb; 93(2):701-10. PubMed ID: 20105541 [TBL] [Abstract][Full Text] [Related]
5. Feeding barley grain steeped in lactic acid modulates rumen fermentation patterns and increases milk fat content in dairy cows. Iqbal S; Zebeli Q; Mazzolari A; Bertoni G; Dunn SM; Yang WZ; Ametaj BN J Dairy Sci; 2009 Dec; 92(12):6023-32. PubMed ID: 19923605 [TBL] [Abstract][Full Text] [Related]
6. Effect of nicotinic acid on rumen fermentation in vitro and in vivo. Riddell DO; Bartley EE; Dayton AD J Dairy Sci; 1980 Sep; 63(9):1429-36. PubMed ID: 7430485 [TBL] [Abstract][Full Text] [Related]
7. Effects of cellobiose and monensin on in vitro fermentation of organic acids by mixed ruminal bacteria. Callaway TR; Martin SA J Dairy Sci; 1997 Jun; 80(6):1126-35. PubMed ID: 9201583 [TBL] [Abstract][Full Text] [Related]
8. Effects of tylosin on concentrations of Fusobacterium necrophorum and fermentation products in the rumen of cattle fed a high-concentrate diet. Nagaraja TG; Sun Y; Wallace N; Kemp KE; Parrott CJ Am J Vet Res; 1999 Sep; 60(9):1061-5. PubMed ID: 10490072 [TBL] [Abstract][Full Text] [Related]
9. Effects of a Saccharomyces cerevisiae culture on in vitro mixed ruminal microorganism fermentation. Sullivan HM; Martin SA J Dairy Sci; 1999 Sep; 82(9):2011-6. PubMed ID: 10509261 [TBL] [Abstract][Full Text] [Related]
10. Alteration of fermentation in continuous culture of mixed rumen bacteria by isolated alfalfa saponins. Lu CD; Tsai LS; Schaefer DM; Jorgensen NA J Dairy Sci; 1987 Apr; 70(4):799-805. PubMed ID: 3584615 [TBL] [Abstract][Full Text] [Related]
11. Rumen fermentation and degradability in buffalo and cattle using the in vitro gas production technique. Calabrò S; Moniello G; Piccolo V; Bovera F; Infascelli F; Tudisco R; Cutrignelli MI J Anim Physiol Anim Nutr (Berl); 2008 Jun; 92(3):356-62. PubMed ID: 18477317 [TBL] [Abstract][Full Text] [Related]
12. Effect of essential oil active compounds on rumen microbial fermentation and nutrient flow in in vitro systems. Castillejos L; Calsamiglia S; Ferret A J Dairy Sci; 2006 Jul; 89(7):2649-58. PubMed ID: 16772584 [TBL] [Abstract][Full Text] [Related]
13. Effects of a proteolytic feed enzyme on intake, digestion, ruminal fermentation, and milk production. Eun JS; Beauchemin KA J Dairy Sci; 2005 Jun; 88(6):2140-53. PubMed ID: 15905444 [TBL] [Abstract][Full Text] [Related]
14. Effect of glucose fermentation on fiber digestion by ruminal microorganisms in vitro. Piwonka EJ; Firkins JL J Dairy Sci; 1996 Dec; 79(12):2196-206. PubMed ID: 9029358 [TBL] [Abstract][Full Text] [Related]
15. Prevention of patulin toxicity on rumen microbial fermentation by SH-containing reducing agents. Morgavi DP; Boudra H; Jouany JP; Graviou D J Agric Food Chem; 2003 Nov; 51(23):6906-10. PubMed ID: 14582994 [TBL] [Abstract][Full Text] [Related]
16. Influence of supplemental chromium on concentrations of liver triglyceride, blood metabolites and rumen VFA profile in steers fed a moderately high fat diet. Besong S; Jackson JA; Trammell DS; Akay V J Dairy Sci; 2001 Jul; 84(7):1679-85. PubMed ID: 11467818 [TBL] [Abstract][Full Text] [Related]
17. Influence of forage type on ruminal bacterial populations and subsequent in vitro fiber digestion. Jung HG; Varel VH J Dairy Sci; 1988 Jun; 71(6):1526-35. PubMed ID: 2841364 [TBL] [Abstract][Full Text] [Related]
18. Effect of sodium bicarbonate addition to alfalfa hay-based diets on digestibility of dietary fractions and rumen characteristics. DePeters EJ; Fredeen AH; Bath DL; Smith NE J Dairy Sci; 1984 Oct; 67(10):2344-55. PubMed ID: 6094626 [TBL] [Abstract][Full Text] [Related]
19. Effects of mucin and its carbohydrate constituents on Escherichia coli O157 growth in batch culture fermentations with ruminal or fecal microbial inoculum. Fox JT; Drouillard JS; Shi X; Nagaraja TG J Anim Sci; 2009 Apr; 87(4):1304-13. PubMed ID: 19028855 [TBL] [Abstract][Full Text] [Related]
20. Effects of dietary changes and yeast culture (Saccharomyces cerevisiae) on rumen microbial fermentation of Holstein heifers. Moya D; Calsamiglia S; Ferret A; Blanch M; Fandiño JI; Castillejos L; Yoon I J Anim Sci; 2009 Sep; 87(9):2874-81. PubMed ID: 19542509 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]