These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 641242)
41. Effect of direct-fed microbials on performance, diet digestibility, and rumen characteristics of Holstein dairy cows. Raeth-Knight ML; Linn JG; Jung HG J Dairy Sci; 2007 Apr; 90(4):1802-9. PubMed ID: 17369221 [TBL] [Abstract][Full Text] [Related]
42. Effect of the magnitude of the decrease of rumen pH on rumen fermentation in a dual-flow continuous culture system. Cerrato-Sánchez M; Calsamiglia S; Ferret A J Anim Sci; 2008 Feb; 86(2):378-83. PubMed ID: 17998434 [TBL] [Abstract][Full Text] [Related]
43. Volatile fatty acid metabolism in sheep. 1. Average daily volatile fatty acid production in the rumen of sheep fed lucerne hay. Van Der Walt JG; Briel BJ Onderstepoort J Vet Res; 1976 Mar; 43(1):11-21. PubMed ID: 940663 [TBL] [Abstract][Full Text] [Related]
44. Effects of nonstructural carbohydrate concentration in alfalfa on fermentation and microbial protein synthesis in continuous culture. Berthiaume R; Benchaar C; Chaves AV; Tremblay GF; Castonguay Y; Bertrand A; Bélanger G; Michaud R; Lafrenière C; McAllister TA; Brito AF J Dairy Sci; 2010 Feb; 93(2):693-700. PubMed ID: 20105540 [TBL] [Abstract][Full Text] [Related]
45. Different techniques to study rumen fermentation characteristics of maturing grass and grass silage. Cone JW; Van Gelder AH; Soliman IA; De Visser H; Van Vuuren AM J Dairy Sci; 1999 May; 82(5):957-66. PubMed ID: 10342234 [TBL] [Abstract][Full Text] [Related]
46. Influence of carbohydrate source on ruminal fermentation characteristics, performance, and microbial protein synthesis in dairy cows. Gozho GN; Mutsvangwa T J Dairy Sci; 2008 Jul; 91(7):2726-35. PubMed ID: 18565931 [TBL] [Abstract][Full Text] [Related]
47. Monensin by fat interactions on trans fatty acids in cultures of mixed ruminal microorganisms grown in continuous fermentors fed corn or barley. Jenkins TC; Fellner V; McGuffey RK J Dairy Sci; 2003 Jan; 86(1):324-30. PubMed ID: 12613874 [TBL] [Abstract][Full Text] [Related]
48. Effects of substituting barley grain with corn on ruminal fermentation characteristics, milk yield, and milk composition of Holstein cows. Khorasani GR; Okine EK; Kennelly JJ J Dairy Sci; 2001 Dec; 84(12):2760-9. PubMed ID: 11814032 [TBL] [Abstract][Full Text] [Related]
49. Effects of halogenated hydrocarbons on rumen microorganisms. Willett KL; Loerch SC; Willett LB J Vet Diagn Invest; 1989 Apr; 1(2):120-3. PubMed ID: 2518692 [TBL] [Abstract][Full Text] [Related]
50. [Metabolism of rumen microbial populations formed on biosubstrates with different assimilation under the effect of pentachlorophenol]. Kalachniuk LH; Vozna OIe; Kalachniuk HI; Lytsur IuM; Latsik NI; Savka OH; Marounek M; Kawai SH Ukr Biokhim Zh (1999); 2002; 74(3):31-41. PubMed ID: 12916235 [TBL] [Abstract][Full Text] [Related]
51. Utilization of methionine and methionine hydroxy analog by rumen microorganisms in vitro. Salsbury RL; Marvil DK; Woodmansee CW; Haenlein GF J Dairy Sci; 1971 Mar; 54(3):390-6. PubMed ID: 5106928 [No Abstract] [Full Text] [Related]
52. Subchronic administration of technical pentachlorophenol to lactating dairy cattle: performance, general health, and pathologic changes. Kinzell JH; Ames NK; Sleight SD; Krehbiel JD; Kuo C; Zabik MJ; Shull LR J Dairy Sci; 1981 Jan; 64(1):42-51. PubMed ID: 7196413 [TBL] [Abstract][Full Text] [Related]
53. Effects of pentachlorophenol on methanogenic fermentation of phenol. Godsy EM; Goerlitz DF; Ehrlich GG Bull Environ Contam Toxicol; 1986 Feb; 36(2):271-7. PubMed ID: 3947766 [No Abstract] [Full Text] [Related]
54. The effect of technical and purified pentachlorophenol on the rat liver. Kimbrough RD; Linder RE Toxicol Appl Pharmacol; 1978 Oct; 46(1):151-62. PubMed ID: 725940 [No Abstract] [Full Text] [Related]
55. Effects of pentachlorophenol on the development of estuarine communities. Tagatz ME; Ivey JM; Moore JC; Tobia M J Toxicol Environ Health; 1977 Oct; 3(3):501-6. PubMed ID: 926202 [TBL] [Abstract][Full Text] [Related]
56. 31P nuclear magnetic resonance studies of effects of some chlorophenols on Escherichia coli and a pentachlorophenol-degrading bacterium. Steiert JG; Thoma WJ; Ugurbil K; Crawford RL J Bacteriol; 1988 Oct; 170(10):4954-7. PubMed ID: 3049554 [TBL] [Abstract][Full Text] [Related]
57. Toxicity of pentachlorophenol to Azotobacter vinelandii. Tam TY; Trevors JT Bull Environ Contam Toxicol; 1981 Aug; 27(2):230-4. PubMed ID: 7296053 [No Abstract] [Full Text] [Related]
58. Use of pentachlorophenol as long-term inhibitor of sulfation of phenols and hydroxamic acids in the rat in vivo. Meerman JH; Sterenborg HM; Mulder GJ Biochem Pharmacol; 1983 May; 32(10):1587-93. PubMed ID: 6860346 [TBL] [Abstract][Full Text] [Related]
59. Inhibition of bacterial transport by uncouplers of oxidative phosphorylation. Effects of pentachlorophenol and analogues in Bacillus subtilis. Nicholas RA; Ordal GW Biochem J; 1978 Dec; 176(3):639-47. PubMed ID: 106840 [TBL] [Abstract][Full Text] [Related]
60. Proline utilization during cellulose fermentation by rumen microorganisms. Amos HE; Little CO; Mitchell GE J Agric Food Chem; 1971; 19(1):112-5. PubMed ID: 5540744 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]