These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 6412467)

  • 81. Strain- and species-specific distribution of the streptomycin gene cluster and kan-related sequences in Streptomyces griseus.
    Hotta K; Ishikawa J
    J Antibiot (Tokyo); 1988 Aug; 41(8):1116-23. PubMed ID: 3139605
    [TBL] [Abstract][Full Text] [Related]  

  • 82. [Reaktion of iron deficiency on metabolism of Streptomyces griseus].
    Brösel E; Tröger R
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1971; 126(6):545-51. PubMed ID: 5004553
    [No Abstract]   [Full Text] [Related]  

  • 83. Influence of medium composition on the production of cephamycins by S. griseus and S. lactamdurans and the characterization of their growth.
    Malina HZ
    Acta Microbiol Pol; 1983; 32(4):353-62. PubMed ID: 6202103
    [TBL] [Abstract][Full Text] [Related]  

  • 84. The regulator of streptomycin gene expression, StrR, of Streptomyces griseus is a DNA binding activator protein with multiple recognition sites.
    Retzlaff L; Distler J
    Mol Microbiol; 1995 Oct; 18(1):151-62. PubMed ID: 8596455
    [TBL] [Abstract][Full Text] [Related]  

  • 85. [Stabilization of characteristics of streptomycin formation in artificial selection].
    Teterìatnik AF; Shikina MG; Zhudina NB; Khirich IV
    Antibiotiki; 1971 Mar; 16(3):267-70. PubMed ID: 4997643
    [No Abstract]   [Full Text] [Related]  

  • 86. [New type of sporulation regulation and streptomycin biosynthesis in secondary Streptomyces griseus mutants].
    Efremenkova OV; Anisova LN; Khokhlov AS
    Izv Akad Nauk SSSR Biol; 1981; (4):573-82. PubMed ID: 6792249
    [No Abstract]   [Full Text] [Related]  

  • 87. [Formation of streptomycin by an inactive mutant strain of Actinomyces streptomycini under the effect of the stimulating factors].
    Penzikova GA; Levitov MM; Anisova LN; Ivkina NS; Rapoport IA
    Antibiotiki; 1971 Jan; 16(1):27-32. PubMed ID: 4994897
    [No Abstract]   [Full Text] [Related]  

  • 88. [Study of foam formation during streptomycin biosynthesis of different culture media].
    Soĭfer RD; Gorskaia SV; Ivankova TA; Belikova NF
    Antibiotiki; 1968 Feb; 13(2):120-6. PubMed ID: 5691820
    [No Abstract]   [Full Text] [Related]  

  • 89. Biosynthesis of streptomycin. dTDP-dihydrostreptose synthase from Streptomyces griseus and dTDP-4-keto-L-rhamnose 3,5-epimerase from S. griseus and Escherichia coli Y10.
    Wahl HP; Grisebach H
    Biochim Biophys Acta; 1979 May; 568(1):243-52. PubMed ID: 109125
    [TBL] [Abstract][Full Text] [Related]  

  • 90. The influence of the rate of aeration on oxidation reduction potentials and streptomycin production by Actinomyces griseus.
    KEMPF JE; SAYLES P
    J Bacteriol; 1946 May; 51():596. PubMed ID: 21064710
    [No Abstract]   [Full Text] [Related]  

  • 91. Biochemistry and regulation of streptomycin and mannosidostreptomycinase (alpha-D-mannosidase) formation.
    Demain AL; Inamine E
    Bacteriol Rev; 1970 Mar; 34(1):1-19. PubMed ID: 4909646
    [No Abstract]   [Full Text] [Related]  

  • 92. The effect of catalase on the redox-changes of Streptomyces griseus 134-culture. Preliminary communication.
    Matkovics B; Kovács E; Kõvári I
    Pathol Microbiol (Basel); 1965; 28(5):830-3. PubMed ID: 5839600
    [No Abstract]   [Full Text] [Related]  

  • 93. Cycloheximide production by Streptomyces griseus: alleviation of end-product inhibition by dialysis-extraction fermentation.
    Kominek LA
    Antimicrob Agents Chemother; 1975 Jun; 7(6):861-3. PubMed ID: 808160
    [TBL] [Abstract][Full Text] [Related]  

  • 94. N-Demethylstreptomycin. I. Microbiological formation and isolation.
    Heding H
    Acta Chem Scand; 1968; 22(5):1649-54. PubMed ID: 5700792
    [No Abstract]   [Full Text] [Related]  

  • 95. Modelling and parameter identification for batch fermentations with Streptomyces tendae under phosphate limitation.
    Mundry C; Kuhn KP
    Appl Microbiol Biotechnol; 1991 Jun; 35(3):306-311. PubMed ID: 22622930
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Automatic analyser/computer system for adaptive control of phosphate concentration during fermentation.
    Pécs M; Szigeti L; Lovrecz G; Pungor E; Nyeste L; Holló F
    J Automat Chem; 1985; 7(1):8-19. PubMed ID: 18925062
    [No Abstract]   [Full Text] [Related]  

  • 97. Sequential processes of phosphate limitation and of phosphate release in streptomycin fermentations.
    Müller PJ; Christner A; Ozegowski JH
    Z Allg Mikrobiol; 1983; 23(4):269-73. PubMed ID: 6412467
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Biosynthesis of streptomycin. Purification and properties of a dTDP-L-dihydrostreptose: streptidine-6-phosphate dihydrostreptosyltransferase from Streptomyces griseus.
    Kniep B; Grisebach H
    Eur J Biochem; 1980 Mar; 105(1):139-44. PubMed ID: 6768553
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Fermentation studies with Streptomyces griseus. I. Carbohydrate sources for the production of protease and streptomycin.
    Shirato S; Nagatsu C
    Appl Microbiol; 1965 Sep; 13(5):669-72. PubMed ID: 5867647
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Selective strategies for antibiotic fermentation, Part II: Effect of aeration on streptomycin production by Streptomyces griseus JB-19.
    Maladkar NK
    Hindustan Antibiot Bull; 1991; 33(1-4):14-8. PubMed ID: 1814861
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.