These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 6412761)

  • 1. The role of hemoglobin in the N-oxidation of 4-chloroaniline.
    Golly I; Hlavica P
    Biochim Biophys Acta; 1983 Oct; 760(1):69-76. PubMed ID: 6412761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulative mechanisms in NADH- and NADPH-supported N-oxidation of 4-chloroaniline catalyzed by cytochrome b5-enriched rabbit liver microsomal fractions.
    Golly I; Hlavica P
    Biochim Biophys Acta; 1987 Jun; 913(2):219-27. PubMed ID: 3109485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of methemoglobin reductase and kinetic study of methemoglobin reduction.
    Kuma F
    J Biol Chem; 1981 Jun; 256(11):5518-23. PubMed ID: 7240153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox conversions of methemoglobin during redox cycling of quinones and aromatic nitrocompounds.
    Cénas N; Ollinger K
    Arch Biochem Biophys; 1994 Nov; 315(1):170-6. PubMed ID: 7979395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monooxygenase activity of human hemoglobin: role of quaternary structure in the preponderant activity of the beta subunits within the tetramer.
    Ferraiolo BL; Onady GM; Mieyal JJ
    Biochemistry; 1984 Nov; 23(23):5528-34. PubMed ID: 6439242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative studies on the cumene hydroperoxide- and NADPH-supported N-oxidation of 4-chloroaniline by cytochrome P-450.
    Hlavica P; Golly I; Mietaschk J
    Biochem J; 1983 Jun; 212(3):539-47. PubMed ID: 6882382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on the mechanism of hepatic microsomal N-oxide formation. N-oxidation of NN-dimethylaniline by a reconstituted rabbit liver microsomal cytochrome P-448 enzyme system.
    Hlavica P; Hülsmann S
    Biochem J; 1979 Jul; 182(1):109-16. PubMed ID: 115464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of ferric cytochrome P450 reduction by NADPH-cytochrome P450 reductase: rapid reduction in the absence of substrate and variations among cytochrome P450 systems.
    Guengerich FP; Johnson WW
    Biochemistry; 1997 Dec; 36(48):14741-50. PubMed ID: 9398194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic reduction of hemoglobins M.
    Nagai M; Yoneyama Y
    Biomed Biochim Acta; 1983; 42(11-12):S159-63. PubMed ID: 6675686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The electron transfer reactions of NADPH: cytochrome P450 reductase with nonphysiological oxidants.
    Cénas N; Anusevicius Z; Bironaité D; Bachmanova GI; Archakov AI; Ollinger K
    Arch Biochem Biophys; 1994 Dec; 315(2):400-6. PubMed ID: 7986084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methemoglobin pathophysiology.
    Jaffé ER
    Prog Clin Biol Res; 1981; 51():133-51. PubMed ID: 7022466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic circular dichroism studies of hemoglobin. The reduction of ferrihemoglobin by ferrocytochrome b5 and characterization of the high-spin hydroxy species of mixed-valence hemoglobin.
    Juckett DA; Hultquist DE
    Biophys Chem; 1984 Jun; 19(4):321-35. PubMed ID: 6743764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of hydrogen peroxide removal reaction by hemoglobin in the presence of reduced pyridine nucleotides.
    Masuoka N; Kodama H; Abe T; Wang DH; Nakano T
    Biochim Biophys Acta; 2003 Jan; 1637(1):46-54. PubMed ID: 12527406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Enzyme-like activity of human hemoglobin. Properties of the hemoglobin-P-450 reductase-coupled aniline hydroxylase system.
    Mieyal JJ; Ackerman RS; Blumer JL; Freeman LS
    J Biol Chem; 1976 Jun; 251(11):3436-41. PubMed ID: 931994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of N,N-dimethylaniline on the association of phenobarbital-induced cytochrome P-450 and NADPH-cytochrome c(P-450) reductase in a reconstituted rabbit liver microsomal enzyme system.
    Hlavica P; Golly I; Wolf J
    Biochim Biophys Acta; 1987 Sep; 915(1):28-36. PubMed ID: 3113486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The reaction of hemoglobin with paraquat radicals in the presence and absence of O2.
    Winterbourn CC
    Biochem Int; 1983 Jul; 7(1):1-8. PubMed ID: 6689604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methemoglobin reductase activity in intact fish red blood cells.
    Jensen FB; Nielsen K
    Comp Biochem Physiol A Mol Integr Physiol; 2018 Feb; 216():14-19. PubMed ID: 29133139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox cycling of bleomycin-Fe(III) and DNA degradation by isolated NADH-cytochrome b5 reductase: involvement of cytochrome b5.
    Mahmutoglu I; Kappus H
    Mol Pharmacol; 1988 Oct; 34(4):578-83. PubMed ID: 2459594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-electron reduction of mitomycin c by rat liver: role of cytochrome P-450 and NADPH-cytochrome P-450 reductase.
    Vromans RM; van de Straat R; Groeneveld M; Vermeulen NP
    Xenobiotica; 1990 Sep; 20(9):967-78. PubMed ID: 2122607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of hemolysate concentration, ionic strength and cytochrome b5 concentration on the rate of methemoglobin reduction in hemolysates of human erythrocytes.
    Sannes LJ; Hultquist DE
    Biochim Biophys Acta; 1978 Dec; 544(3):547-54. PubMed ID: 31928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.