These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 6413655)

  • 1. Effects of monovalent and divalent cations on Ca2+ fluxes across chromaffin secretory membrane vesicles.
    Krieger-Brauer HI; Gratzl M
    J Neurochem; 1983 Nov; 41(5):1269-76. PubMed ID: 6413655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of Ca2+ and Na+ across the chromaffin-granule membrane.
    Phillips JH
    Biochem J; 1981 Oct; 200(1):99-107. PubMed ID: 7332540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium-dependent calcium efflux from adrenal chromaffin cells following exocytosis. Possible role of secretory vesicle membranes.
    Jan CR; Schneider AS
    J Biol Chem; 1992 May; 267(14):9695-700. PubMed ID: 1577804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Na+-Ca2+ exchange in sarcolemmal membrane vesicles of dog mesenteric artery.
    Matlib MA
    Am J Physiol; 1988 Sep; 255(3 Pt 1):C323-30. PubMed ID: 3421315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake of Ca2+ by isolated secretory vesicles from adrenal medulla.
    Krieger-Brauer H; Gratzl M
    Biochim Biophys Acta; 1982 Sep; 691(1):61-70. PubMed ID: 6814486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Matrix free Ca2+ in isolated chromaffin vesicles.
    Bulenda D; Gratzl M
    Biochemistry; 1985 Dec; 24(26):7760-5. PubMed ID: 3004565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium-dependent and calcium-dependent calcium transport by rat brain microsomes.
    Schellenberg GD; Swanson PD
    Biochim Biophys Acta; 1981 Oct; 648(1):13-27. PubMed ID: 6794624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of monovalent cations on Na+/Ca2+ exchange and ATP-dependent Ca2+ transport in synaptic plasma membranes.
    Coutinho OP; Carvalho AP; Carvalho CA
    J Neurochem; 1983 Sep; 41(3):670-6. PubMed ID: 6409998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for a divalent cation dependent catecholamine storage complex in chromaffin granules.
    Südhof TC
    Biochem Biophys Res Commun; 1983 Oct; 116(2):663-8. PubMed ID: 6418164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catecholamine release from bovine chromaffin cells: the role of sodium-calcium exchange in ouabain-evoked release.
    Török TL; Powis DA
    Exp Physiol; 1990 Jul; 75(4):573-86. PubMed ID: 2171585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solubilization and reconstitution of membranes containing the Na+ -Ca2+ exchange carrier from rat brain.
    Schellenberg GD; Swanson PD
    Biochim Biophys Acta; 1982 Aug; 690(1):133-44. PubMed ID: 6812630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of 3-O-methyl-D-glucose uptake in isolated bovine adrenal chromaffin cells.
    Bigornia L; Wattis M; Bihler I
    Biochim Biophys Acta; 1986 Apr; 886(2):177-86. PubMed ID: 3083872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium transport mechanisms in membrane vesicles from guinea pig brain synaptosomes.
    Gill DL; Grollman EF; Kohn LD
    J Biol Chem; 1981 Jan; 256(1):184-92. PubMed ID: 6778859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Na+/Ca2+ antiport in cultured arterial smooth muscle cells. Inhibition by magnesium and other divalent cations.
    Smith JB; Cragoe EJ; Smith L
    J Biol Chem; 1987 Sep; 262(25):11988-94. PubMed ID: 3624244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca2+ binding to chromaffin vesicle matrix proteins: effect of pH, Mg2+, and ionic strength.
    Reiffen FU; Gratzl M
    Biochemistry; 1986 Jul; 25(15):4402-6. PubMed ID: 3756146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion selectivity of the cation transport system of isolated intact cattle rod outer segments: evidence for a direct communication between the rod plasma membrane and the rod disk membranes.
    Schnetkamp PP
    Biochim Biophys Acta; 1980 May; 598(1):66-90. PubMed ID: 7417431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of sodium gradient on calcium uptake by plasma membranes of the myometrium].
    Bratkova NF; Kurskii MD; Kosterin SA
    Biokhimiia; 1982 Jun; 47(6):1015-21. PubMed ID: 6810956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carrier-mediated sodium-dependent and calcium-dependent calcium efflux from pinched-off presynaptic nerve terminals (synaptosomes) in vitro.
    Blaustein MP; Ector AC
    Biochim Biophys Acta; 1976 Jan; 419(2):295-308. PubMed ID: 813768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromaffin cell calcium channel kinetics measured isotopically through fast calcium, strontium, and barium fluxes.
    Artalejo CR; García AG; Aunis D
    J Biol Chem; 1987 Jan; 262(2):915-26. PubMed ID: 2433271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The 45Ca2+ uptake by Trichoderma viride mycelium. Correlation with growth and conidiation.
    Krystofová S; Varecka L; Betina V
    Gen Physiol Biophys; 1995 Aug; 14(4):323-7. PubMed ID: 8720696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.