These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 6414831)

  • 1. Morphology of the organic matrix of the spicule of the sea urchin larva.
    Benson S; Jones EM; Crise-Benson N; Wilt F
    Exp Cell Res; 1983 Oct; 148(1):249-53. PubMed ID: 6414831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of spicule proteins from Strongylocentrotus purpuratus.
    Venkatesan M; Simpson RT
    Exp Cell Res; 1986 Sep; 166(1):259-64. PubMed ID: 3743658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The organic matrix of the skeletal spicule of sea urchin embryos.
    Benson SC; Benson NC; Wilt F
    J Cell Biol; 1986 May; 102(5):1878-86. PubMed ID: 3517009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular control over spicule formation in sea urchin embryos: A structural approach.
    Beniash E; Addadi L; Weiner S
    J Struct Biol; 1999 Mar; 125(1):50-62. PubMed ID: 10196116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrastructural localization of spicule matrix proteins in normal and metalloproteinase inhibitor-treated sea urchin primary mesenchyme cells.
    Ingersoll EP; McDonald KL; Wilt FH
    J Exp Zool A Comp Exp Biol; 2003 Dec; 300(2):101-12. PubMed ID: 14648670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A technique for detecting matrix proteins in the crystalline spicule of the sea urchin embryo.
    Cho JW; Partin JS; Lennarz WJ
    Proc Natl Acad Sci U S A; 1996 Feb; 93(3):1282-6. PubMed ID: 8577755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The localization of occluded matrix proteins in calcareous spicules of sea urchin larvae.
    Seto J; Zhang Y; Hamilton P; Wilt F
    J Struct Biol; 2004 Oct; 148(1):123-30. PubMed ID: 15363792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Matrix proteins of the teeth of the sea urchin Lytechinus variegatus.
    Veis DJ; Albinger TM; Clohisy J; Rahima M; Sabsay B; Veis A
    J Exp Zool; 1986 Oct; 240(1):35-46. PubMed ID: 3095485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential distribution of spicule matrix proteins in the sea urchin embryo skeleton.
    Kitajima T; Urakami H
    Dev Growth Differ; 2000 Aug; 42(4):295-306. PubMed ID: 10969729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of larval sea urchin spicule SM50 domains in organic matrix self-assembly and calcium carbonate mineralization.
    Rao A; Seto J; Berg JK; Kreft SG; Scheffner M; Cölfen H
    J Struct Biol; 2013 Aug; 183(2):205-15. PubMed ID: 23796503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of sea urchin primary mesenchyme cells and spicules during biomineralization in vitro.
    Decker GL; Morrill JB; Lennarz WJ
    Development; 1987 Oct; 101(2):297-312. PubMed ID: 3446478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demonstration of the granular layer and the fate of the hyaline layer during the development of a sea urchin (Lytechinus variegatus).
    Cameron RA; Holland ND
    Cell Tissue Res; 1985; 239(2):455-8. PubMed ID: 3978700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spicule matrix protein LSM34 is essential for biomineralization of the sea urchin spicule.
    Peled-Kamar M; Hamilton P; Wilt FH
    Exp Cell Res; 2002 Jan; 272(1):56-61. PubMed ID: 11740865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of spicule matrix proteins in the sea urchin embryo during normal and experimentally altered spiculogenesis.
    Urry LA; Hamilton PC; Killian CE; Wilt FH
    Dev Biol; 2000 Sep; 225(1):201-13. PubMed ID: 10964475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Matrix and mineral in the sea urchin larval skeleton.
    Wilt FH
    J Struct Biol; 1999 Jun; 126(3):216-26. PubMed ID: 10475684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomineralization of the spicules of sea urchin embryos.
    Wilt FH
    Zoolog Sci; 2002 Mar; 19(3):253-61. PubMed ID: 12125922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lectin uptake and incorporation into the calcitic spicule of sea urchin embryos.
    Mozingo NM
    Zygote; 2015 Jun; 23(3):467-73. PubMed ID: 24735584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The origin of spicule-forming cells in a 'primitive' sea urchin (Eucidaris tribuloides) which appears to lack primary mesenchyme cells.
    Wray GA; McClay DR
    Development; 1988 Jun; 103(2):305-15. PubMed ID: 3066611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycosylation Fosters Interactions between Model Sea Urchin Spicule Matrix Proteins. Implications for Embryonic Spiculogenesis and Biomineralization.
    Jain G; Pendola M; Koutsoumpeli E; Johnson S; Evans JS
    Biochemistry; 2018 May; 57(21):3032-3035. PubMed ID: 29757633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Matrix metalloproteinase inhibitors disrupt spicule formation by primary mesenchyme cells in the sea urchin embryo.
    Ingersoll EP; Wilt FH
    Dev Biol; 1998 Apr; 196(1):95-106. PubMed ID: 9527883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.