These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 6415014)

  • 21. Nonuniform fatigue characteristics of slow-twitch motor units activated at a fixed percentage of their maximum tetanic tension.
    Cope TC; Webb CB; Yee AK; Botterman BR
    J Neurophysiol; 1991 Nov; 66(5):1483-92. PubMed ID: 1765789
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tension development and duty cycle affect Qpeak and VO2peak in contracting muscle.
    Dodd SL; Powers SK; Crawford MP
    Med Sci Sports Exerc; 1994 Aug; 26(8):997-1002. PubMed ID: 7968435
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Faster adjustment of O2 delivery does not affect V(O2) on-kinetics in isolated in situ canine muscle.
    Grassi B; Gladden LB; Samaja M; Stary CM; Hogan MC
    J Appl Physiol (1985); 1998 Oct; 85(4):1394-403. PubMed ID: 9760333
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of isotonic contractions on the rate of fatigue development and the resting membrane potential in the sartorius muscle of the frog, Rana pipiens.
    Renaud JM; Kong M
    Can J Physiol Pharmacol; 1991 Nov; 69(11):1754-9. PubMed ID: 1804519
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Force-velocity shifts with repetitive isometric and isotonic contractions of canine gastrocnemius in situ.
    Ameredes BT; Brechue WF; Andrew GM; Stainsby WN
    J Appl Physiol (1985); 1992 Nov; 73(5):2105-11. PubMed ID: 1474091
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A prior bout of contractions speeds VO2 and blood flow on-kinetics and reduces the VO2 slow-component amplitude in canine skeletal muscle contracting in situ.
    Hernández A; McDonald JR; Lai N; Gladden LB
    J Appl Physiol (1985); 2010 May; 108(5):1169-76. PubMed ID: 20223997
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxygen cost of twitch and tetanic isometric contractions of rat skeletal muscle.
    Hood DA; Gorski J; Terjung RL
    Am J Physiol; 1986 Apr; 250(4 Pt 1):E449-56. PubMed ID: 3963186
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Staircase, fatigue, and caffeine in skeletal muscle in situ.
    MacIntosh BR; Kupsh CC
    Muscle Nerve; 1987 Oct; 10(8):717-22. PubMed ID: 2446131
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Blood flow and metabolism during isometric contractions in cat skeletal muscle.
    Petrofsky JS; Phillips CA; Sawka MN; Hanpeter D; Stafford D
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Mar; 50(3):493-502. PubMed ID: 7251439
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioenergetics of contracting skeletal muscle after partial reduction of blood flow.
    Hogan MC; Gladden LB; Grassi B; Stary CM; Samaja M
    J Appl Physiol (1985); 1998 Jun; 84(6):1882-8. PubMed ID: 9609780
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanical and metabolic determination of VO2 and fatigue during repetitive isometric contractions in situ.
    Ameredes BT; Brechue WF; Stainsby WN
    J Appl Physiol (1985); 1998 Jun; 84(6):1909-16. PubMed ID: 9609784
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Blood flow response to muscle contractions is more closely related to metabolic rate than contractile work.
    Hamann JJ; Kluess HA; Buckwalter JB; Clifford PS
    J Appl Physiol (1985); 2005 Jun; 98(6):2096-100. PubMed ID: 15691905
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of altered arterial O2 tensions on muscle metabolism in dog skeletal muscle during fatiguing work.
    Hogan MC; Welch HG
    Am J Physiol; 1986 Aug; 251(2 Pt 1):C216-22. PubMed ID: 3740252
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxygen uptake for negative work, stretching contractions by in situ dog skeletal muscle.
    Stainsby WN
    Am J Physiol; 1976 Apr; 230(4):1013-7. PubMed ID: 1266993
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physiological determinants of Qmax in contracting canine skeletal muscle in situ.
    Barclay JK
    Med Sci Sports Exerc; 1988 Oct; 20(5 Suppl):S113-8. PubMed ID: 3057310
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The contractile properties and movement dynamics of pigeon eye muscle.
    Stelling J; McVean A
    Pflugers Arch; 1988 Aug; 412(3):314-21. PubMed ID: 3186434
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contraction duration affects metabolic energy cost and fatigue in skeletal muscle.
    Hogan MC; Ingham E; Kurdak SS
    Am J Physiol; 1998 Mar; 274(3):E397-402. PubMed ID: 9530120
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physiologic properties of contraction of the canine cremaster and cranial preputial muscles.
    Spurgeon TL; Kitchell RL; Lohse CL
    Am J Vet Res; 1978 Dec; 39(12):1884-7. PubMed ID: 749569
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Failure of oxygen radical scavengers to modify fatigue in electrically stimulated muscle.
    Shrier I; Hussain S; Magder S
    Can J Physiol Pharmacol; 1991 Oct; 69(10):1470-5. PubMed ID: 1777847
    [TBL] [Abstract][Full Text] [Related]  

  • 40. O2 uptake and work by in situ muscle performing contractions with constant shortening.
    Stainsby WN; Peterson CV; Barbee RW
    Med Sci Sports Exerc; 1981; 13(1):27-30. PubMed ID: 7219132
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.