These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 6415041)

  • 1. Postincision steps of photoproduct removal in a mutant of Bacillus cereus 569 that produces UV-sensitive spores.
    Weinberger S; Evenchick Z; Hertman I
    J Bacteriol; 1983 Nov; 156(2):909-13. PubMed ID: 6415041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of cellular differentiation on ultraviolet induced DNA damage and its repair mechanisms in B. cereus.
    Kamat AS; Pradhan DS
    Indian J Biochem Biophys; 1991 Apr; 28(2):83-92. PubMed ID: 1908819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transitory UV resistance during germination of UV-sensitive spores produced by a mutant of Bacillus cereus 569.
    Weinberger S; Evenchik Z; Hertman I
    Photochem Photobiol; 1984 Jun; 39(6):775-80. PubMed ID: 6431457
    [No Abstract]   [Full Text] [Related]  

  • 4. Relationship between survival, photoproduct production and repair capacity in a variant of Bacillus cereus.
    Johnston GC; Young IE
    Photochem Photobiol; 1974 Sep; 20(3):213-9. PubMed ID: 4213357
    [No Abstract]   [Full Text] [Related]  

  • 5. Plasmid-associated sensitivity of Bacillus thuringiensis to UV light.
    Benoit TG; Wilson GR; Bull DL; Aronson AI
    Appl Environ Microbiol; 1990 Aug; 56(8):2282-6. PubMed ID: 2119568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in ultraviolet resistance and photoproduct formation as early events in spore germination of Bacillus cereus T.
    Irie R
    Photochem Photobiol; 1978 Jul; 28(1):61-5. PubMed ID: 105364
    [No Abstract]   [Full Text] [Related]  

  • 7. Effect of dipicolinic acid on the ultraviolet radiation resistance of Bacillus cereus spores.
    Germaine GR; Murrell WG
    Photochem Photobiol; 1973 Mar; 17(3):145-53. PubMed ID: 4632644
    [No Abstract]   [Full Text] [Related]  

  • 8. Inactivation of
    Pendyala B; Patras A; Gopisetty VVS; Sasges M; Balamurugan S
    Foodborne Pathog Dis; 2019 Oct; 16(10):704-711. PubMed ID: 31135181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoprotection by dipicolinate against inactivation of bacterial spores with ultraviolet light.
    Grecz N; Tang T; Frank HA
    J Bacteriol; 1973 Feb; 113(2):1058-60. PubMed ID: 4632312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directed evolution by UV-C treatment of Bacillus cereus spores.
    Begyn K; Kim TD; Heyndrickx M; Michiels C; Aertsen A; Rajkovic A; Devlieghere F
    Int J Food Microbiol; 2020 Mar; 317():108424. PubMed ID: 31790956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incision and postincision steps of pyrimidine dimer removal in excision-defective mutants of Saccharomyces cerevisiae.
    Wilcox DR; Prakash L
    J Bacteriol; 1981 Nov; 148(2):618-23. PubMed ID: 7028721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Resistance of resting cyst-like forms of Bacillus cereus to exposure to high temperature, ultraviolet rays and low-molecular alcohols].
    Pronin SV; El'-Registan GI; Shevtsov VV; Duda VI
    Mikrobiologiia; 1982; 51(2):314-7. PubMed ID: 6806579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultraviolet irradiation of DNA complexed with alpha/beta-type small, acid-soluble proteins from spores of Bacillus or Clostridium species makes spore photoproduct but not thymine dimers.
    Nicholson WL; Setlow B; Setlow P
    Proc Natl Acad Sci U S A; 1991 Oct; 88(19):8288-92. PubMed ID: 1924287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultraviolet sensitivity and photoproducts in spore-like bodies of an excision-repair-deficient and dipicolinic-acid-less strain of Bacillus subtilis.
    Munakata N; Fitz-Jones PC; Young IE
    Can J Microbiol; 1975 Jul; 21(7):1129-32. PubMed ID: 807309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transitory germinative excision repair in Bacillus subtilis.
    Wang TC; Rupert CS
    J Bacteriol; 1977 Mar; 129(3):1313-9. PubMed ID: 403175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoreactivation, photoproduct formation, and deoxyribonucleic acid state in ultraviolet-irradiated sporulating cultures of Bacillus cereus.
    Baillie E; Germaine GR; Murrell WG; Ohye DF
    J Bacteriol; 1974 Oct; 120(1):516-23. PubMed ID: 4214215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of ultraviolet resistance in sporulating Bacillus cereus T.
    Germaine GR; Coggiola E; Murrell WG
    J Bacteriol; 1973 Nov; 116(2):823-31. PubMed ID: 4200858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thymine-containing dimers as well as spore photoproducts are found in ultraviolet-irradiated Bacillus subtilis spores that lack small acid-soluble proteins.
    Setlow B; Setlow P
    Proc Natl Acad Sci U S A; 1987 Jan; 84(2):421-3. PubMed ID: 3099295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetically controlled removal of "spore photoproduct" from deoxyribonucleic acid of ultraviolet-irradiated Bacillus subtilis spores.
    Munakata N; Rupert CS
    J Bacteriol; 1972 Jul; 111(1):192-8. PubMed ID: 4204907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of initiated spores on the resistance of nongerminated resting forms of Bacillus cereus remaining in the suspension to the action of damaging agents].
    Pronin SV
    Mikrobiologiia; 1987; 56(6):956-62. PubMed ID: 3130550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.