These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 6416104)

  • 1. Chromophoric peptide substrates for activity determination of animal aspartic proteinases in the presence of their zymogens: a novel assay.
    Pohl J; Baudys M; Kostka V
    Anal Biochem; 1983 Aug; 133(1):104-9. PubMed ID: 6416104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromophoric and fluorophoric peptide substrates cleaved through the dipeptidyl carboxypeptidase activity of cathepsin B.
    Pohl J; Davinic S; Bláha I; Strop P; Kostka V
    Anal Biochem; 1987 Aug; 165(1):96-101. PubMed ID: 3318552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The synthesis, purification, and evaluation of a chromophoric substrate for pepsin and other aspartyl proteases: design of a substrate based on subsite preferences.
    Dunn BM; Kammermann B; McCurry KR
    Anal Biochem; 1984 Apr; 138(1):68-73. PubMed ID: 6428272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of aspartic proteinases by propart peptides of human procathepsin D and chicken pepsinogen.
    Fusek M; Mares M; Vágner J; Voburka Z; Baudys M
    FEBS Lett; 1991 Aug; 287(1-2):160-2. PubMed ID: 1879525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The pH dependence of the hydrolysis of chromogenic substrates of the type, Lys-Pro-Xaa-Yaa-Phe-(NO2)Phe-Arg-Leu, by selected aspartic proteinases: evidence for specific interactions in subsites S3 and S2.
    Dunn BM; Valler MJ; Rolph CE; Foundling SI; Jimenez M; Kay J
    Biochim Biophys Acta; 1987 Jun; 913(2):122-30. PubMed ID: 3109484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A systematic series of synthetic chromophoric substrates for aspartic proteinases.
    Dunn BM; Jimenez M; Parten BF; Valler MJ; Rolph CE; Kay J
    Biochem J; 1986 Aug; 237(3):899-906. PubMed ID: 3541904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aspartic proteinases: their activation and structural studies.
    Turk V; Puizdar V; Lah T; Kregar I
    Prog Clin Biol Res; 1982; 102 Pt C():75-86. PubMed ID: 6762543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the extended active sites of acid proteinases.
    Sampath-Kumar PS; Fruton JS
    Proc Natl Acad Sci U S A; 1974 Apr; 71(4):1070-2. PubMed ID: 4598291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the pepsin activity in human gastric juice, using defined oligopeptides as substrates.
    Schnaith E
    Clin Biochem; 1989 Apr; 22(2):91-8. PubMed ID: 2498014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Determination of activity of aspartic proteinases by cleavage of new chromogenic substrates].
    Litvinova OV; Balandina GN; Stepanov VM
    Bioorg Khim; 1998 Mar; 24(3):175-8. PubMed ID: 9612558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aspartic proteinases in fishes and aquatic invertebrates.
    Gildberg A
    Comp Biochem Physiol B; 1988; 91(3):425-35. PubMed ID: 3148385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuna pepsinogens and pepsins. Purification, characterization and amino-terminal sequences.
    Tanji M; Kageyama T; Takahashi K
    Eur J Biochem; 1988 Nov; 177(2):251-9. PubMed ID: 3142769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new chromophoric substrate for penicillopepsin and other fungal aspartic proteinases.
    Hofmann T; Hodges RS
    Biochem J; 1982 Jun; 203(3):603-10. PubMed ID: 7052062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The kinetics of hydrolysis of some synthetic substrates containing neutral hydrophilic groups by pig pepsin and chicken liver cathepsin D.
    Irvine GB; Blumsom NL; Elmore DT
    Biochem J; 1983 Apr; 211(1):237-42. PubMed ID: 6409091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation of methionine residues of porcine and bovine pepsins.
    Kido K; Kassell B
    Biochemistry; 1975 Feb; 14(3):631-5. PubMed ID: 1089431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PEPSINOGEN AND PEPSIN: FURTHER IMMUNOCHEMICAL STUDIES OF THE CONFORMATIONAL CHANGES INVOLVED IN THE FORMATION OF PORCINE AND HUMAN PEPSINS FROM THEIR ZYMOGENS.
    SCHLAMOWITZ M; SHAW A; JACKSON WT
    Biochemistry; 1964 May; 3():636-40. PubMed ID: 14193632
    [No Abstract]   [Full Text] [Related]  

  • 17. Effect of diethylpyrocarbonate on human gastric mucosa acid proteinases: zymogen activation.
    Malliopoulou TB; Rakitzis ET
    Enzyme; 1982; 28(4):294-9. PubMed ID: 6759111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering the substrate specificity of rhizopuspepsin: the role of Asp 77 of fungal aspartic proteinases in facilitating the cleavage of oligopeptide substrates with lysine in P1.
    Lowther WT; Majer P; Dunn BM
    Protein Sci; 1995 Apr; 4(4):689-702. PubMed ID: 7613467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monkey pepsinogens and pepsins. Monkey pepsinogens and pepsins. V. Purification, Characterization, and amino-terminal sequence determination of crab-eating monkey pepsinogens and pepsins.
    Kageyama T; Takahashi K
    J Biochem; 1980 Sep; 88(3):635-45. PubMed ID: 6774974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the activation of the canine pepsinogens.
    Cavadore JC; Cataldi M; Steffens R; Glick DM
    Biochimie; 1979; 61(3):355-60. PubMed ID: 378269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.