These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. A model of the visual localization of prey by frog and toad. House DH Biol Cybern; 1988; 58(3):173-92. PubMed ID: 3358952 [TBL] [Abstract][Full Text] [Related]
23. The influence of ACTH fragments on habituation of the prey catching behaviour in the European toad (Bufo bufo L.). Horn I; Horn E Physiol Behav; 1982 Mar; 28(3):497-500. PubMed ID: 6281825 [TBL] [Abstract][Full Text] [Related]
24. Excitatory and inhibitory transmission from the optic tectum to nucleus isthmi and its vicinity in amphibians. Wu GY; Wang SR Brain Behav Evol; 1995; 46(1):43-9. PubMed ID: 7552220 [TBL] [Abstract][Full Text] [Related]
26. How does the toad's visual system discriminate different worm-like stimuli? Wang DL; Arbib MA Biol Cybern; 1991; 64(3):251-61. PubMed ID: 2004136 [TBL] [Abstract][Full Text] [Related]
27. Responses of retinal and tectal neurons in non-paralyzed toads Bufo bufo and B. marinus to the real size versus angular size of objects moved at variable distance. Spreckelsen C; Schürg-Pfeiffer E; Ewert JP Neurosci Lett; 1995 Jan; 184(2):105-8. PubMed ID: 7724041 [TBL] [Abstract][Full Text] [Related]
28. Focal attention in the frog: behavioral and physiological correlates. Ingle D Science; 1975 Jun; 188(4192):1033-5. PubMed ID: 1170636 [TBL] [Abstract][Full Text] [Related]
29. A neural model of interactions subserving prey-predator discrimination and size preference in anuran amphibia. Cervantes-Pérez F; Lara R; Arbib M J Theor Biol; 1985 Mar; 113(1):117-52. PubMed ID: 3999769 [TBL] [Abstract][Full Text] [Related]
30. Visual performance of the toad (Bufo bufo) at low light levels: retinal ganglion cell responses and prey-catching accuracy. Aho AC; Donner K; Helenius S; Larsen LO; Reuter T J Comp Physiol A; 1993; 172(6):671-82. PubMed ID: 8350284 [TBL] [Abstract][Full Text] [Related]
31. Behavioral Signatures of a Developing Neural Code. Avitan L; Pujic Z; Mölter J; McCullough M; Zhu S; Sun B; Myhre AE; Goodhill GJ Curr Biol; 2020 Sep; 30(17):3352-3363.e5. PubMed ID: 32710821 [TBL] [Abstract][Full Text] [Related]
32. Spatial distribution of a fusiform cell in the optic tectum of Pantodon buchholzi, the African butterfly fish (Teleostei, Osteoglossomorpha). Saidel WM; Mandau MK; Haynes PT Brain Res; 2008 Dec; 1243():63-9. PubMed ID: 18848824 [TBL] [Abstract][Full Text] [Related]
33. [Ganglion cell types in the retino-tectal projection in the toad Bufo bufo (L.)]. Ewert JP; von Wietersheim A Acta Anat (Basel); 1974; 88(1):56-66. PubMed ID: 4209065 [No Abstract] [Full Text] [Related]
34. Neuroglia of the optic tectum in the Bufo bufo (Amphibian Anura), first trials. Gianonatti C; Bodega G; Bardasano JL J Hirnforsch; 1987; 28(2):139-43. PubMed ID: 2442243 [TBL] [Abstract][Full Text] [Related]
35. A cholinergic gating mechanism controlled by competitive interactions in the optic tectum of the pigeon. Marín G; Salas C; Sentis E; Rojas X; Letelier JC; Mpodozis J J Neurosci; 2007 Jul; 27(30):8112-21. PubMed ID: 17652602 [TBL] [Abstract][Full Text] [Related]
36. Apomorphine-induced suppression of prey oriented turning in toads is correlated with activity changes in pretectum and tectum: [14C]2DG studies and single cell recordings. Glagow M; Ewert JP Neurosci Lett; 1996 Dec; 220(3):215-8. PubMed ID: 8994231 [TBL] [Abstract][Full Text] [Related]
37. Neuronal correlates of seasonal changes in contrast-detection of prey catching behaviour in toads (Bufo bufo L.). Ewert JP; Siefert G Vision Res; 1974 Jun; 14(6):431-2. PubMed ID: 4212194 [No Abstract] [Full Text] [Related]
38. A key by which the toad's visual system gets access to the domain of prey. Wachowitz S; Ewert JP Physiol Behav; 1996 Sep; 60(3):877-87. PubMed ID: 8873264 [TBL] [Abstract][Full Text] [Related]
39. Configurational prey selection by Bufo, Alytes, Bombina and Hyla. Ewert JP; Burghagen H Brain Behav Evol; 1979; 16(3):157-75. PubMed ID: 114268 [TBL] [Abstract][Full Text] [Related]
40. The tectonigral pathway regulates appetitive locomotion in predatory hunting in mice. Huang M; Li D; Cheng X; Pei Q; Xie Z; Gu H; Zhang X; Chen Z; Liu A; Wang Y; Sun F; Li Y; Zhang J; He M; Xie Y; Zhang F; Qi X; Shang C; Cao P Nat Commun; 2021 Jul; 12(1):4409. PubMed ID: 34285209 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]