These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 6416324)

  • 1. Heparin binding and release properties of DEAE cellulose membranes.
    Schmitt E; Holtz M; Klinkmann H; Esther G; Courtney JM
    Biomaterials; 1983 Oct; 4(4):309-13. PubMed ID: 6416324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Binding and desorption of heparin to DEAE-cellulose dialysis membranes].
    Schmitt E; Holtz M; Esther G; Courtney JM; Klinkmann H
    Z Urol Nephrol; 1983; 76(2):99-108. PubMed ID: 6858414
    [No Abstract]   [Full Text] [Related]  

  • 3. Prevention of blood loss in dialysers with DEAE-cellulose membranes does not require increased doses of heparin.
    Ward RA; Schmidt B; Gurland HJ
    Nephrol Dial Transplant; 1993; 8(10):1140-5. PubMed ID: 8272230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro evaluation of heparinized Cuprophan hemodialysis membranes.
    Hinrichs WL; ten Hoopen HW; Engbers GH; Feijen J
    J Biomed Mater Res; 1997 Jun; 35(4):443-50. PubMed ID: 9189822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modified cellulosic dialyzer membranes: an investigative tool in thrombogenicity studies.
    Mahiout A; Meinhold H; Kessel M; Vienken J; Baurmeister U
    ASAIO Trans; 1988; 34(3):878-81. PubMed ID: 3058187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-dose heparinization can be used with DEAE-cellulose hemodialysis membranes.
    Ward RA; Schmidt B; Gurland HJ
    ASAIO Trans; 1990; 36(3):M321-4. PubMed ID: 2252689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of dialysis membranes with atomic force microscopy.
    Kasper K; Herrmann KH; Dietz P; Hansma PK; Inacker O; Lehmann HD; Rintelen T
    Ultramicroscopy; 1992 Jul; 42-44 ( Pt B)():1181-8. PubMed ID: 1413256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilization of heparin on polylactide for application to degradable biomaterials in contact with blood.
    Seifert B; Groth T; Herrmann K; Romaniuk P
    J Biomater Sci Polym Ed; 1995; 7(3):277-87. PubMed ID: 7577830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photochemical immobilization of heparin, dermatan sulphate, dextran sulphate and endothelial cell surface heparan sulphate onto cellulose membranes for the preparation of athrombogenic and antithrombogenic polymers.
    Erdtmann M; Keller R; Baumann H
    Biomaterials; 1994 Oct; 15(13):1043-8. PubMed ID: 7888574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a heparin neutralizer.
    Hoffmann JJ; Meulendijk PN
    Thromb Res; 1980 Jun; 18(6):897-900. PubMed ID: 7414569
    [No Abstract]   [Full Text] [Related]  

  • 11. Evaluation of phagocytic cell function in an ex vivo model of hemodialysis.
    Ward RA; Schmidt B; Blumenstein M; Gurland HJ
    Kidney Int; 1990 Feb; 37(2):776-82. PubMed ID: 2407889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro and in vivo biocompatibility of substituted cellulose and synthetic membranes.
    Mandolfo S; Tetta C; David S; Gervasio R; Ognibene D; Wratten ML; Tessore E; Imbasciati E
    Int J Artif Organs; 1997 Nov; 20(11):603-9. PubMed ID: 9464869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A clinical study on different cellulosic dialysis membranes.
    Falkenhagen D; Bosch T; Brown GS; Schmidt B; Holtz M; Baurmeister U; Gurland H; Klinkmann H
    Nephrol Dial Transplant; 1987; 2(6):537-45. PubMed ID: 3126455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Hemophan and Cuprophan dialysis on beta-2 microglobulin levels, exercise capacity, and symptoms scores.
    Tomson CV; Woffindin C; Sheldon W; Hoenich NA
    Nephrol Dial Transplant; 1988; 3(3):355-6. PubMed ID: 3140115
    [No Abstract]   [Full Text] [Related]  

  • 15. Nonthrombogenic surface by radiation grafting of heparin: preparation, in-vitro and in-vivo studies.
    Chawla AS; Chang TM
    Biomater Med Devices Artif Organs; 1974; 2(1):157-69. PubMed ID: 4441580
    [No Abstract]   [Full Text] [Related]  

  • 16. Low thrombogenicity of polyethylene glycol-grafted cellulose membranes does not influence heparin requirements in hemodialysis.
    Wright MJ; Woodrow G; Umpleby S; Hull S; Brownjohn AM; Turney JH
    Am J Kidney Dis; 1999 Jul; 34(1):36-42. PubMed ID: 10401013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(vinyl alcohol)-heparin hydrogels as sensor catheter membranes.
    Brinkman E; van der Does L; Bantjes A
    Biomaterials; 1991 Jan; 12(1):63-70. PubMed ID: 1901230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Capacity of triethylaminoethyl cellulose to remove heparin contained in the plasma].
    Matsuo T; Ohoki Y; Hata M; Yamada T
    Rinsho Byori; 1983 May; 31(5):549-52. PubMed ID: 6632314
    [No Abstract]   [Full Text] [Related]  

  • 19. Further evaluation of a heparin neutralizer and its effect on factor IX in normal and coumadin-plasma.
    Vargo JJ; Joist JH
    Thromb Res; 1983 Feb; 29(3):281-8. PubMed ID: 6845282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and anticoagulant properties of heparin-like electrospun membranes from carboxymethyl chitosan and bacterial cellulose sulfate.
    Song W; Zeng Q; Yin X; Zhu L; Gong T; Pan C
    Int J Biol Macromol; 2018 Dec; 120(Pt B):1396-1405. PubMed ID: 30266642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.