These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 6416630)

  • 1. [Development of synaptic responses and membrane conductances of neurons of intracerebellar nuclei in the rat].
    Gardette R; Debono M; Dupont JL; Crepel F
    C R Seances Acad Sci III; 1983; 297(1):43-6. PubMed ID: 6416630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiological studies on the postnatal development of intracerebellar nuclei neurons in rat cerebellar slices maintained in vitro. I. Postsynaptic potentials.
    Gardette R; Debono M; Dupont JL; Crepel F
    Brain Res; 1985 Mar; 351(1):47-55. PubMed ID: 2986789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophysiological studies on the postnatal development of intracerebellar nuclei neurons in rat cerebellar slices maintained in vitro. II. Membrane conductances.
    Gardette R; Debono M; Dupont JL; Crepel F
    Brain Res; 1985 May; 352(1):97-106. PubMed ID: 2408714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid, synaptically driven increases in the intrinsic excitability of cerebellar deep nuclear neurons.
    Aizenman CD; Linden DJ
    Nat Neurosci; 2000 Feb; 3(2):109-11. PubMed ID: 10649564
    [No Abstract]   [Full Text] [Related]  

  • 5. GABAergic synaptic communication in the GABAergic and non-GABAergic cells in the deep cerebellar nuclei.
    Uusisaari M; Knöpfel T
    Neuroscience; 2008 Oct; 156(3):537-49. PubMed ID: 18755250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracellular activation and membrane conductances of neurones in the guinea-pig deep cerebellar nuclei in vitro.
    Jahnsen H
    J Physiol; 1986 Mar; 372():149-68. PubMed ID: 2425083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsic membrane properties and synaptic response characteristics of neurons in the rat's external cortex of the inferior colliculus.
    Ahuja TK; Wu SH
    Neuroscience; 2007 Mar; 145(3):851-65. PubMed ID: 17258868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic input of rat spinal lamina I projection and unidentified neurones in vitro.
    Dahlhaus A; Ruscheweyh R; Sandkühler J
    J Physiol; 2005 Jul; 566(Pt 2):355-68. PubMed ID: 15878938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dendritic backpropagation and synaptic plasticity in the mormyrid electrosensory lobe.
    Engelmann J; van den Burg E; Bacelo J; de Ruijters M; Kuwana S; Sugawara Y; Grant K
    J Physiol Paris; 2008; 102(4-6):233-45. PubMed ID: 18992811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short-term synaptic plasticity during development of rat mossy fibre to granule cell synapses.
    Wall MJ
    Eur J Neurosci; 2005 Apr; 21(8):2149-58. PubMed ID: 15869511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reliable control of spike rate and spike timing by rapid input transients in cerebellar stellate cells.
    Suter KJ; Jaeger D
    Neuroscience; 2004; 124(2):305-17. PubMed ID: 14980381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potentiation of mossy fiber EPSCs in the cerebellar nuclei by NMDA receptor activation followed by postinhibitory rebound current.
    Pugh JR; Raman IM
    Neuron; 2006 Jul; 51(1):113-23. PubMed ID: 16815336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity- and BDNF-induced plasticity of miniature synaptic currents in ES cell-derived neurons integrated in a neocortical network.
    Copi A; Jüngling K; Gottmann K
    J Neurophysiol; 2005 Dec; 94(6):4538-43. PubMed ID: 16293594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity-dependent maturation of excitatory synaptic connections in solitary neuron cultures of mouse neocortex.
    Takada N; Yanagawa Y; Komatsu Y
    Eur J Neurosci; 2005 Jan; 21(2):422-30. PubMed ID: 15673441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhythms, synchrony and electrical coupling in the Locus coeruleus.
    Ballantyne D; Andrzejewski M; Mückenhoff K; Scheid P
    Respir Physiol Neurobiol; 2004 Nov; 143(2-3):199-214. PubMed ID: 15519556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of inhibitory and excitatory synapses between hippocampal neurons in very low density cultures.
    Wilcox KS; Buchhalter J; Dichter MA
    Synapse; 1994 Oct; 18(2):128-51. PubMed ID: 7839312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative effects of methylmercury on parallel-fiber and climbing-fiber responses of rat cerebellar slices.
    Yuan Y; Atchison WD
    J Pharmacol Exp Ther; 1999 Mar; 288(3):1015-25. PubMed ID: 10027838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiology of guinea-pig cerebellar nuclear cells in the in vitro brain stem-cerebellar preparation.
    Llinás R; Mühlethaler M
    J Physiol; 1988 Oct; 404():241-58. PubMed ID: 2855348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proceedings: Excitatory and inhibitory monosynaptic actions mediated by a serotonin containing neurone in Aplysia californica.
    Gerschfeld HM; Paupardin-Tritsch D
    J Physiol; 1973 Oct; 234(2):28P-29P. PubMed ID: 4358350
    [No Abstract]   [Full Text] [Related]  

  • 20. [Electric synapses in a mammal: electrotonic coupling between giant neurons of Deiters' nucleus in rats].
    Korn H; Sotelo C; Crepel F
    J Physiol (Paris); 1972 Oct; 65():Suppl:250A. PubMed ID: 4346479
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.