BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 6417384)

  • 1. Rate of CO2 diffusion in the human red blood cell measured with pH-sensitive fluorescence.
    Niizeki K; Mochizuki M; Uchida K
    Jpn J Physiol; 1983; 33(4):635-50. PubMed ID: 6417384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Secondary CO2 diffusion following HCO3- shift across the red blood cell membrane.
    Niizeki K; Mochizuki M; Kagawa T
    Jpn J Physiol; 1984; 34(6):1003-13. PubMed ID: 6442997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical solution of partial differential equations for CO2 diffusion accompanying HCO3- shift in red blood cells.
    Kagawa T; Mochizuki M
    Jpn J Physiol; 1984; 34(6):1029-47. PubMed ID: 6442999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion coefficients of CO2 molecule and bicarbonate ion in hemoglobin solution measured by fluorescence technique.
    Uchida K; Mochizuki M; Niizeki K
    Jpn J Physiol; 1983; 33(4):619-34. PubMed ID: 6417383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between hematocrit and CO2 contents in whole blood and true plasma.
    Takiwaki H; Mochizuki M; Niizeki K
    Jpn J Physiol; 1983; 33(4):567-78. PubMed ID: 6417380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Change in PCO2 in red cell suspension following bicarbonate shift.
    Shimouchi A; Mochizuki M; Niizeki K
    Jpn J Physiol; 1984; 34(6):1015-27. PubMed ID: 6442998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Depletion of 18O from C18O2 in erythrocyte suspensions. The permeability of the erythrocyte membrane to CO2.
    Silverman DN; Tu C; Wynns GC
    J Biol Chem; 1976 Jul; 251(14):4428-35. PubMed ID: 932039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurements of CO2 diffusivity and buffering capacity in myoglobin solutions.
    Uchida K; Doi K
    Jpn J Physiol; 1992; 42(1):89-100. PubMed ID: 1625382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of red blood cell HCO3(-)/Cl- exchange kinetics on lung CO2 transfer: theory.
    Crandall ED; Bidani A
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Feb; 50(2):265-71. PubMed ID: 6782059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical solution of partial differential equations describing the simultaneous O2 and CO2 diffusions in the red blood cell.
    Mochizuki M; Kagawa T
    Jpn J Physiol; 1986; 36(1):43-63. PubMed ID: 3088308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time course of exchanges between red cells and extracellular fluid during CO2 uptake.
    Forster RE; Crandall ED
    J Appl Physiol; 1975 Apr; 38(4):710-8. PubMed ID: 237868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffusion-limited exchange of 18O between CO2 and water in red cell suspensions.
    Silverman DN; Tu CK; Roessler N
    Respir Physiol; 1981 Jun; 44(3):285-98. PubMed ID: 6791257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular basis of ionic strength effects: interaction of enzyme and sulfate ion in CO2 hydration and HCO3- dehydration reactions catalyzed by carbonic anhydrase II.
    Pocker Y; Miao CH
    Biochemistry; 1987 Dec; 26(25):8481-6. PubMed ID: 3126803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The rate of the root shift in eel red cells and eel haemoglobin solutions.
    Forster RE; Steen JB
    J Physiol; 1969 Oct; 204(2):259-82. PubMed ID: 4980965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analyses of the CO2 dissociation curve of oxygenated blood and the Haldane effect in human blood.
    Tazawa H; Mochizuki M; Tamura M; Kagawa T
    Jpn J Physiol; 1983; 33(4):601-18. PubMed ID: 6417382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of CO2 excretion and intravascular pH disequilibria during carbonic anhydrase inhibition.
    Cardenas V; Heming TA; Bidani A
    J Appl Physiol (1985); 1998 Feb; 84(2):683-94. PubMed ID: 9475881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epithelial carbonic anhydrases facilitate PCO2 and pH regulation in rat duodenal mucosa.
    Mizumori M; Meyerowitz J; Takeuchi T; Lim S; Lee P; Supuran CT; Guth PH; Engel E; Kaunitz JD; Akiba Y
    J Physiol; 2006 Jun; 573(Pt 3):827-42. PubMed ID: 16556652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interstitial PCO2 and pH, and their role as chemostimulants in the isolated respiratory network of neonatal rats.
    Voipio J; Ballanyi K
    J Physiol; 1997 Mar; 499 ( Pt 2)(Pt 2):527-42. PubMed ID: 9080379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The carbamate reaction of glycylglycine, plasma, and tissue extracts evaluated by a pH stopped flow apparatus.
    Gros G; Forster RE; Lin L
    J Biol Chem; 1976 Jul; 251(14):4398-407. PubMed ID: 6479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of carbon dioxide and pH variations in vitro on blood respiratory functions, red blood cell volume, transmembrane pH gradients, and sickling in sickle cell anemia.
    Ueda Y; Bookchin RM
    J Lab Clin Med; 1984 Aug; 104(2):146-59. PubMed ID: 6431043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.