These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 6417555)

  • 1. Hydraulic model of myogenic autoregulation and the cerebrovascular bed: the effects of altering systemic arterial pressure.
    Portnoy HD; Chopp M; Branch C
    Neurosurgery; 1983 Nov; 13(5):482-98. PubMed ID: 6417555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitroprusside-induced hypotension and cerebrovascular autoregulation in the anesthetized pig.
    Stånge K; Lagerkranser M; Sollevi A
    Anesth Analg; 1991 Dec; 73(6):745-52. PubMed ID: 1952175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cerebrospinal fluid pulse waveform as an indicator of cerebral autoregulation.
    Portnoy HD; Chopp M; Branch C; Shannon MB
    J Neurosurg; 1982 May; 56(5):666-78. PubMed ID: 7069479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of nitroprusside on cerebral pressure autoregulation.
    Weiss MH; Spence J; Apuzzo ML; Heiden JS; McComb JG; Kurze T
    Neurosurgery; 1979 Jan; 4(1):56-9. PubMed ID: 450217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regional blood flow in dogs during halothane anesthesia and controlled hypotension produced by nitroprusside or nitroglycerin.
    Colley PS; Sivarajan M
    Anesth Analg; 1984 May; 63(5):503-10. PubMed ID: 6424509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of impaired cerebral autoregulation using spectral analysis of intracranial pressure waves.
    Nichols JS; Beel JA; Munro LG
    J Neurotrauma; 1996 Aug; 13(8):439-56. PubMed ID: 8880608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational use of dopamine in hypotensive newborns: Improving our understanding of the effect on cerebral autoregulation.
    Eriksen VR
    Dan Med J; 2017 Jul; 64(7):. PubMed ID: 28673382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mathematical analysis of the myogenic hypothesis with special reference to autoregulation of renal blood flow.
    Oien AH; Aukland K
    Circ Res; 1983 Mar; 52(3):241-52. PubMed ID: 6825217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical model of blood flow autoregulation: roles of myogenic, shear-dependent, and metabolic responses.
    Carlson BE; Arciero JC; Secomb TW
    Am J Physiol Heart Circ Physiol; 2008 Oct; 295(4):H1572-9. PubMed ID: 18723769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myogenic activity in isolated subepicardial and subendocardial coronary arterioles.
    Kuo L; Davis MJ; Chilian WM
    Am J Physiol; 1988 Dec; 255(6 Pt 2):H1558-62. PubMed ID: 2462367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of nitroprusside, nitroglycerin, and deep isoflurane anesthesia for induced hypotension.
    Maktabi M; Warner D; Sokoll M; Boarini D; Adolphson A; Speed T; Kassell N
    Neurosurgery; 1986 Sep; 19(3):350-5. PubMed ID: 3093914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationships among cerebral perfusion pressure, autoregulation, and transcranial Doppler waveform: a modeling study.
    Ursino M; Giulioni M; Lodi CA
    J Neurosurg; 1998 Aug; 89(2):255-66. PubMed ID: 9688121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induced hypotension: action of sodium nitroprusside and nitroglycerin on the microcirculation. A micropuncture investigation.
    Endrich B; Franke N; Peter K; Messmer K
    Anesthesiology; 1987 May; 66(5):605-13. PubMed ID: 3107434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Very low frequency blood pressure variability is modulated by myogenic vascular function and is reduced in stroke-prone rats.
    Stauss HM; Petitto CE; Rotella DL; Wong BJ; Sheriff DD
    J Hypertens; 2008 Jun; 26(6):1127-37. PubMed ID: 18475150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebrovascular response to changes of cerebral venous pressure and cerebrospinal fluid pressure.
    Kato Y; Mokry M; Pucher R; Auer LM
    Acta Neurochir (Wien); 1991; 109(1-2):52-6. PubMed ID: 2068968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drugs and cerebral autoregulation.
    McDowall DG
    Eur J Clin Invest; 1982 Oct; 12(5):377-8. PubMed ID: 6816607
    [No Abstract]   [Full Text] [Related]  

  • 17. Effect of jugular venous pressure on cerebral autoregulation in dogs.
    McPherson RW; Koehler RC; Traystman RJ
    Am J Physiol; 1988 Dec; 255(6 Pt 2):H1516-24. PubMed ID: 3144187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of two methods of altering blood pressures for assessing neonatal cerebral blood flow autoregulation.
    Ong BY; MacIntyre C; Bose D; Palahniuk RJ
    Can J Physiol Pharmacol; 1986 Jul; 64(7):1023-6. PubMed ID: 3768793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebral effects of hypocapnia plus nitroglycerin-induced hypotension in dogs.
    Artru AA; Wright K; Colley PS
    J Neurosurg; 1986 Jun; 64(6):924-31. PubMed ID: 3084720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of sodium nitroprusside-induced hypotension on the cerebral and hindlimb blood flow in dogs.
    Chang CL; Yeh FC; Ho W; Chen HI
    Proc Natl Sci Counc Repub China B; 1985 Jul; 9(3):202-7. PubMed ID: 4070507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.