BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 6417605)

  • 21. Disappearance of afferent and efferent nerve terminals in the inner ear of the chick embryo after chronic treatment with beta-bungarotoxin.
    Hirokawa N
    J Cell Biol; 1977 Apr; 73(1):27-46. PubMed ID: 856835
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Freeze-fracture study of the vestibular hair cell surface during development.
    Favre D; Bagger-Sjöbäck D; Mbiene JP; Sans A
    Anat Embryol (Berl); 1986; 175(1):69-76. PubMed ID: 3492155
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Embryonic and postnatal development of afferent innervation in cat vestibular receptors.
    Favre D; Sans A
    Acta Otolaryngol; 1979; 87(1-2):97-107. PubMed ID: 310629
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Freeze-fracture studies on the synapse between the type I hair cell and the calyceal terminal in the guinea-pig vestibular system.
    Gulley RL; Bagger-Sjöbäck D
    J Neurocytol; 1979 Oct; 8(5):591-603. PubMed ID: 317909
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Postnatal maturation of cochlear sensory hairs in the mouse.
    Anniko M
    Anat Embryol (Berl); 1983; 166(3):355-68. PubMed ID: 6869851
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synaptic morphology of inner and outer hair cells of the human organ of Corti.
    Nadol JB
    J Electron Microsc Tech; 1990 Jun; 15(2):187-96. PubMed ID: 2355269
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synaptic structures in the type II hair cell in the vestibular system of the guinea pig. A freeze-fracture and TEM study.
    Bagger-Sjöbäck D; Gulley RL
    Acta Otolaryngol; 1979; 88(5-6):401-11. PubMed ID: 316962
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The sensory epithelia of the human labyrinth. A freeze-fracturing and transmission electron microscopic study.
    Bagger-Sjöbäck D; Lundquist PG; Galey F; Ylikoski J
    Am J Otol; 1983 Jan; 4(3):203-13. PubMed ID: 6829735
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Developmental morphology of the mouse inner ear. A scanning electron microscopic observation.
    Lim DJ; Anniko M
    Acta Otolaryngol Suppl; 1985; 422():1-69. PubMed ID: 3877398
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neural and infranuclear region changes in outer hair cells in acoustically exposed rabbits.
    Omata T; Omata E; Wilhelms HJ; Schätzle W
    Eur Arch Otorhinolaryngol; 1992; 249(5):287-92. PubMed ID: 1524812
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Morphological changes of the afferent and efferent nerve endings of the outer hair cells after acoustic exposure].
    Omata T; Kobari M; Ouchi J; Schätzle W
    Nihon Jibiinkoka Gakkai Kaiho; 1984 Sep; 87(9):1103-10. PubMed ID: 6520643
    [No Abstract]   [Full Text] [Related]  

  • 32. The in vitro development of innervated sensory hair cells of a mammal.
    Van De Water TR; Heywood P
    Acta Otolaryngol; 1976; 82(5-6):337-42. PubMed ID: 998202
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of vestibular receptor surfaces in human fetuses.
    Dechesne CJ; Sans A
    Am J Otolaryngol; 1985; 6(5):378-87. PubMed ID: 3878099
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vestibular hair cell pathology following low-dose irradiation during embryonic development.
    Anniko M; Hultcrantz M
    Acta Otolaryngol; 1984; 98(3-4):292-301. PubMed ID: 6541855
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reciprocal synapses at the base of outer hair cells in the organ of corti of man.
    Nadol JB
    Ann Otol Rhinol Laryngol; 1981; 90(1 Pt 1):12-7. PubMed ID: 7469290
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Early development and degeneration of vestibular hair cells in bronx waltzer mutant mice.
    Cheong MA; Steel KP
    Hear Res; 2002 Feb; 164(1-2):179-89. PubMed ID: 11950537
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultrastructural organization of calcitonin gene-related peptide immunoreactive efferent axons and terminals in the vestibular periphery.
    Wackym PA
    Am J Otol; 1993 Jan; 14(1):41-50. PubMed ID: 8424475
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrastructural study of striated organelles in vestibular sensory cells of human fetuses.
    Sans A
    Anat Embryol (Berl); 1989; 179(5):457-63. PubMed ID: 2786353
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DiI reveals a prenatal arrival of efferents at the differentiating otocyst of mice.
    Fritzsch B; Nichols DH
    Hear Res; 1993 Feb; 65(1-2):51-60. PubMed ID: 8458759
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Freeze-fracturing of vestibular sensory epithelia in a strain of the waltzing guinea pig.
    Sobin A; Flock A; Bagger-Sjöbäck D
    Acta Otolaryngol; 1983; 96(3-4):207-14. PubMed ID: 6605650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.