These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 6418121)

  • 1. Carbon dioxide removal by a hemodialyzer with the dialysate channel coupled to the bubble oxygenator.
    Zborowski M; Kmiotek W; Sliwinska J; Ciszecki J; Werynski A
    Artif Organs; 1983 Nov; 7(4):481-4. PubMed ID: 6418121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Use of a membrane oxygenator in extracorporeal circulation in the child. Preliminary conclusions].
    Aubert J; Frigiola A; Pannetier A; Couvélly JP
    Ann Anesthesiol Fr; 1977; 18(1):22-8. PubMed ID: 16540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Evolutionary biological aspects of the physiology of extracorporeal CO2 removal].
    Nolte S
    Anaesthesist; 1989 Nov; 38(11):622-5. PubMed ID: 2517576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of an implantable oxygenator with cross-flow pump.
    Asakawa Y; Funakubo A; Fukunaga K; Taga I; Higami T; Kawamura T; Fukui Y
    ASAIO J; 2006; 52(3):291-5. PubMed ID: 16760718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thrombocytopenia in extracorporeal circulation (ECC). II: Bubble oxygenator versus artificial kidney.
    de Jong JC; Smit Sibinga CT; Wildevuur CR
    Trans Am Soc Artif Intern Organs; 1975; 21():40-8. PubMed ID: 1146013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [CO2 elimination via extracorporeal circulation in respiratory assistance: artificial lung or kidney? Experimental study].
    Gille JP; Lautier A; Tousseul B
    Ann Chir; 1992; 46(1):71-6. PubMed ID: 1550322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pO2 and pCO2 increment in post-dialyzer blood: the role of dialysate.
    Sombolos KI; Bamichas GI; Christidou FN; Gionanlis LD; Karagianni AC; Anagnostopoulos TC; Natse TA
    Artif Organs; 2005 Nov; 29(11):892-8. PubMed ID: 16266303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EC CO2R: oxygenator or hemodialyzer? An in vitro study.
    Gille JP; Lautier A; Tousseul B
    Int J Artif Organs; 1992 Apr; 15(4):229-33. PubMed ID: 1587645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring of CO2 exchange during cardiopulmonary bypass: the effect of oxygenator design on the applicability of capnometry.
    Aittomäki J
    Perfusion; 1993; 8(4):337-44. PubMed ID: 10171988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Independent control of blood gas PO2 and PCO2 in a bubble oxygenator.
    Sutherland KM; Pearson DT; Gordon LS
    Clin Phys Physiol Meas; 1988 May; 9(2):97-105. PubMed ID: 3134153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A clinical evaluation of the gas transfer characteristics and gaseous microemboli production of two bubble oxygenators.
    Pearson DT; Holden MP; Poslad SJ; Murray A; Waterhouse PS
    Life Support Syst; 1984; 2(4):252-66. PubMed ID: 6441873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The gas-exchange properties of membrane blood oxygenators with immobilized heparin].
    Cherkas DD; Skorik VI; Novikova SP; Shilov VV; Kazakov SP
    Anesteziol Reanimatol; 1992; (4):56-7. PubMed ID: 1485678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an artificial placenta: CO2 elimination and hemodynamics as a function of arteriovenous blood flow.
    Ivascu FA; Somand DM; Skrzypchak AM; Chambers SD; Bartlett RH; Hirschl RB
    J Pediatr Surg; 2005 Jun; 40(6):1034-7. PubMed ID: 15991192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of two new liquid-liquid oxygenators.
    Sueda T; Fukunaga S; Matsuura Y; Kajihara H
    ASAIO J; 1993; 39(4):923-8. PubMed ID: 8123928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-vitro performance of a low flow extracorporeal carbon dioxide removal circuit.
    Barrett NA; Hart N; Camporota L
    Perfusion; 2020 Apr; 35(3):227-235. PubMed ID: 31441365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Development of a novel artificial heart-lung system for long-term cardiopulmonary support--experimental evaluation in goats with total cardiopulmonary bypass].
    Eya K
    Hokkaido Igaku Zasshi; 1999 Sep; 74(5):395-404. PubMed ID: 10495854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical comparison of the General Electric-Peirce membrane lung and bubble oxygenator for prolonged cardiopulmonary bypass.
    Chopra PS; Dufek JH; Kroncke GM; Dacumos GC; Celesia GG; Troner SP; Marshall JR; Jefferson JW; Loring LL; Kahn DR
    Surgery; 1973 Dec; 74(6):874-9. PubMed ID: 4749631
    [No Abstract]   [Full Text] [Related]  

  • 18. Quantitative gas transfer of an intravascular oxygenator.
    Tönz M; von Segesser LK; Leskosek B; Turina MI
    Ann Thorac Surg; 1994 Jan; 57(1):146-50. PubMed ID: 8279881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellulose acetate fibers for blood gas exchange in a pumpless model of hollow fiber oxygenator (HFO).
    Rassidakis A; Kostopoulos C; Vardas P; Drimis S; Zohios I; Rokas S; Moulopoulos S
    Life Support Syst; 1985; 3 Suppl 1():298-301. PubMed ID: 3870583
    [No Abstract]   [Full Text] [Related]  

  • 20. Comparative performance of microporous polypropylene membrane lungs for CO2 removal at low blood flow rates.
    Mook PH; Wong P; Wildevuur CR; Mayes PJ; Gaylor JD
    Trans Am Soc Artif Intern Organs; 1983; 29():215-20. PubMed ID: 6424301
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.