BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 6418674)

  • 1. Synthetic TN glycopeptide related to human glycophorin AM. High-field proton and carbon-13 nuclear magnetic resonance study.
    Pavia AA; Ferrari B
    Int J Pept Protein Res; 1983 Nov; 22(5):539-48. PubMed ID: 6418674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blood group antigens: synthesis of TN glycopeptide related to human glycophorin AM.
    Ferrari B; Pavia AA
    Int J Pept Protein Res; 1983 Nov; 22(5):549-59. PubMed ID: 6654602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One- and two-dimensional NMR studies of the N-terminal portion of glycophorin A at 11.7 Tesla.
    Dill K; Hu SH; Berman E; Pavia AA; Lacombe JM
    J Protein Chem; 1990 Apr; 9(2):129-36. PubMed ID: 2386609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and characterisation of highly glycosylated glycopeptides with Tn-antigenic structures corresponding to human glycophorin AN.
    Klich G; Paulsen H; Meyer B; Meldal M; Bock K
    Carbohydr Res; 1997 Mar; 299(1-2):33-48. PubMed ID: 9129295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parallel solid-phase synthesis of mucin-like glycopeptides.
    Liu M; Barany G; Live D
    Carbohydr Res; 2005 Sep; 340(13):2111-22. PubMed ID: 16026772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Possible role of the carbohydrate residues on the structure of the N-terminus of glycophorin AM.
    Dill K; Carter RD; Lacombe JM; Pavia AA
    Carbohydr Res; 1986 Sep; 152():217-28. PubMed ID: 3768909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subtle differences in glycosylation of blood group M and N type glycophorin A detected with anti-Tn lectins and confirmed by chemical analysis.
    Krotkiewski H; Duk M; Lisowska E
    Acta Biochim Pol; 1995; 42(1):41-4. PubMed ID: 7653159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational consequences of protein glycosylation: preparation of O-mannosyl serine and threonine building blocks, and their incorporation into glycopeptide sequences derived from alpha-dystroglycan.
    Liu M; Borgert A; Barany G; Live D
    Biopolymers; 2008; 90(3):358-68. PubMed ID: 17868094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic glycopeptides for the development of tumour-selective vaccines.
    Kunz H
    J Pept Sci; 2003 Sep; 9(9):563-73. PubMed ID: 14552419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyvalent GalNAcalpha1-->Ser/Thr (Tn) and Galbeta1-->3GalNAcalpha1-->Ser/Thr (T alpha) as the most potent recognition factors involved in Maclura pomifera agglutinin-glycan interactions.
    Wu AM
    J Biomed Sci; 2005; 12(1):135-52. PubMed ID: 15864746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical and carbon-13 nuclear magnetic resonance studies of the blood group M and N active sialoglycopeptides from human glycophorin A.
    Prohaska R; Koerner TA; Armitage IM; Furthmayr H
    J Biol Chem; 1981 Jun; 256(11):5781-91. PubMed ID: 7240172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and conformational analysis of N-glycopeptides. II. CD, molecular dynamics, and NMR spectroscopic studies on linear N-glycopeptides.
    Perczel A; Kollát E; Hollósi M; Fasman GD
    Biopolymers; 1993 Apr; 33(4):665-85. PubMed ID: 8467070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 'Wave-type' structure of a synthetic hexaglycosylated decapeptide: a part of the extracellular domain of human glycophorin A.
    Schuster O; Klich G; Sinnwell V; Kränz H; Paulsen H; Meyer B
    J Biomol NMR; 1999 May; 14(1):33-45. PubMed ID: 10382304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mg and Mc: mutations within the amino-terminal region of glycophorin A.
    Furthmayr H; Metaxas MN; Metaxas-Bühler M
    Proc Natl Acad Sci U S A; 1981 Jan; 78(1):631-5. PubMed ID: 6166001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformation of cyclo-(L-threonine)2 and cyclo-(L-allothreonine)2. A proton and carbon n.m.r study.
    Kopple KD; Narutis V
    Int J Pept Protein Res; 1981 Jul; 18(1):33-40. PubMed ID: 6273344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient substitution reaction from cysteine to the serine residue of glycosylated polypeptide: repetitive peptide segment ligation strategy and the synthesis of glycosylated tetracontapeptide having acid labile sialyl-T(N) antigens.
    Okamoto R; Souma S; Kajihara Y
    J Org Chem; 2009 Mar; 74(6):2494-501. PubMed ID: 19236026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational study of glycopeptides. Asn-containing peptides and their glycosylated derivatives.
    Ishii H; Inoue Y; Chûjô R
    Int J Pept Protein Res; 1984 Nov; 24(5):421-9. PubMed ID: 6519913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational study of O-glycosylated threonine containing peptide models.
    Maeji NJ; Inoue Y; Chujo R
    Int J Pept Protein Res; 1987 Jun; 29(6):699-707. PubMed ID: 3114160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lectinochemical studies on the glyco-recognition factors of a Tn (GalNAcalpha1-->Ser/Thr) specific lectin isolated from the seeds of Salvia sclarea.
    Wu AM
    J Biomed Sci; 2005; 12(1):167-84. PubMed ID: 15864748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specificity of anti-Mg antibody--a study with synthetic peptides and glycopeptides.
    Cartron JP; Ferrari B; Huet M; Pavia AA
    Exp Clin Immunogenet; 1984; 1(2):112-6. PubMed ID: 6086072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.