These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 6418708)

  • 1. Comparison of direct and indirect immunoradiometric assays (IRMA) for Bacillus anthracis spores immobilised on multispot microscope slides.
    Phillips AP; Martin KL
    J Appl Bacteriol; 1983 Oct; 55(2):315-24. PubMed ID: 6418708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of immunoradiometric assays of Bacillus anthracis spores immobilised on multispot slides and on microtitre plates.
    Phillips AP; Martin KL
    J Immunol Methods; 1983 Sep; 62(3):273-82. PubMed ID: 6411819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radioactive labels for Protein A: evaluation in the indirect immunoradiometric assay (IRMA) for Bacillus anthracis spores.
    Phillips AP; Martin KL
    J Appl Bacteriol; 1984 Jun; 56(3):449-56. PubMed ID: 6430862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of spore surface antigens in the genus Bacillus by the use of polyclonal antibodies in immunofluorescence tests.
    Phillips AP; Martin KL
    J Appl Bacteriol; 1988 Jan; 64(1):47-55. PubMed ID: 3127370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Bacillus anthracis by polyclonal antibodies against extracted vegetative cell antigens.
    Phillips AP; Ezzell JW
    J Appl Bacteriol; 1989 May; 66(5):419-32. PubMed ID: 2502530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of a microfluorometer in immunofluorescence assays of individual spores of Bacillus anthracis and Bacillus cereus.
    Phillips AP; Martin KL
    J Immunol Methods; 1982 Mar; 49(3):271-82. PubMed ID: 6802901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differentiation between spores of Bacillus anthracis and Bacillus cereus by a quantitative immunofluorescence technique.
    Phillips AP; Martin KL; Broster MG
    J Clin Microbiol; 1983 Jan; 17(1):41-7. PubMed ID: 6402519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anthrax spore detection by a luminex assay based on monoclonal antibodies that recognize anthrose-containing oligosaccharides.
    Tamborrini M; Holzer M; Seeberger PH; Schürch N; Pluschke G
    Clin Vaccine Immunol; 2010 Sep; 17(9):1446-51. PubMed ID: 20660139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monoclonal antibodies against spore antigens of Bacillus anthracis.
    Phillips AP; Campbell AM; Quinn R
    FEMS Microbiol Immunol; 1988 Dec; 1(3):169-78. PubMed ID: 2483677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variations on the staining method in quantitative indirect immunofluorescence assays for Bacillus spores, and the use of fluorescein--protein A.
    Phillips AP; Martin KL
    J Immunol Methods; 1982 Nov; 54(3):361-9. PubMed ID: 6184416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real time detection of anthrax spores using highly specific anti-EA1 recombinant antibodies produced by competitive panning.
    Love TE; Redmond C; Mayers CN
    J Immunol Methods; 2008 May; 334(1-2):1-10. PubMed ID: 18395220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of immunofluorescence measurements of individual bacteria in direct and indirect assays for Bacillus anthracis and Bacillus cereus spores.
    Phillips AP; Martin KL
    J Appl Bacteriol; 1982 Oct; 53(2):223-31. PubMed ID: 6819288
    [No Abstract]   [Full Text] [Related]  

  • 13. A microtiter fluorometric assay to detect the germination of Bacillus anthracis spores and the germination inhibitory effects of antibodies.
    Welkos SL; Cote CK; Rea KM; Gibbs PH
    J Microbiol Methods; 2004 Feb; 56(2):253-65. PubMed ID: 14744454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immuno-detection of anthrose containing tetrasaccharide in the exosporium of Bacillus anthracis and Bacillus cereus strains.
    Tamborrini M; Oberli MA; Werz DB; Schürch N; Frey J; Seeberger PH; Pluschke G
    J Appl Microbiol; 2009 May; 106(5):1618-28. PubMed ID: 19226390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of antibodies against anthrose tetrasaccharide for specific detection of Bacillus anthracis spores.
    Kuehn A; Kovác P; Saksena R; Bannert N; Klee SR; Ranisch H; Grunow R
    Clin Vaccine Immunol; 2009 Dec; 16(12):1728-37. PubMed ID: 19793896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The flow cytometry of Bacillus anthracis spores revisited.
    Stopa PJ
    Cytometry; 2000 Dec; 41(4):237-44. PubMed ID: 11084608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast and sensitive detection of Bacillus anthracis spores by immunoassay.
    Morel N; Volland H; Dano J; Lamourette P; Sylvestre P; Mock M; Créminon C
    Appl Environ Microbiol; 2012 Sep; 78(18):6491-8. PubMed ID: 22773632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative immunofluorescence studies of the serology of Bacillus anthracis spores.
    Phillips AP; Martin KL
    Appl Environ Microbiol; 1983 Dec; 46(6):1430-2. PubMed ID: 6419678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Bacillus anthracis spore component antigens conserved across diverse Bacillus cereus sensu lato strains.
    Mukhopadhyay S; Akmal A; Stewart AC; Hsia RC; Read TD
    Mol Cell Proteomics; 2009 Jun; 8(6):1174-91. PubMed ID: 19208616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wet and dry density of Bacillus anthracis and other Bacillus species.
    Carrera M; Zandomeni RO; Sagripanti JL
    J Appl Microbiol; 2008 Jul; 105(1):68-77. PubMed ID: 18298528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.