BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 6418719)

  • 1. Properties of a Streptococcus lactis strain that ferments lactose slowly.
    Crow VL; Thomas TD
    J Bacteriol; 1984 Jan; 157(1):28-34. PubMed ID: 6418719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct galactose phosphoenolpyruvate-dependent phosphotransferase system in Streptococcus lactis.
    Park YH; McKay LL
    J Bacteriol; 1982 Feb; 149(2):420-5. PubMed ID: 6799488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular cloning of lactose genes in dairy lactic streptococci: the phospho-beta-galactosidase and beta-galactosidase genes and their expression products.
    De Vos WM; Simons G
    Biochimie; 1988 Apr; 70(4):461-73. PubMed ID: 3139067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmid linkage of the D-tagatose 6-phosphate pathway in Streptococcus lactis: effect on lactose and galactose metabolism.
    Crow VL; Davey GP; Pearce LE; Thomas TD
    J Bacteriol; 1983 Jan; 153(1):76-83. PubMed ID: 6294064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lactose hydrolysing enzymes in Streptococcus lactis and Streptococcus cremoris and also in some other species of streptococci.
    Farrow JA
    J Appl Bacteriol; 1980 Dec; 49(3):493-503. PubMed ID: 6783605
    [No Abstract]   [Full Text] [Related]  

  • 6. Characterization of the lactose-specific enzymes of the phosphotransferase system in Lactococcus lactis.
    de Vos WM; Boerrigter I; van Rooyen RJ; Reiche B; Hengstenberg W
    J Biol Chem; 1990 Dec; 265(36):22554-60. PubMed ID: 2125052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular phosphorylation of glucose analogs via the phosphoenolpyruvate: mannose-phosphotransferase system in Streptococcus lactis.
    Thompson J; Chassy BM
    J Bacteriol; 1985 Apr; 162(1):224-34. PubMed ID: 3920204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration and gene replacement in the Lactococcus lactis lac operon: induction of a cryptic phospho-beta-glucosidase in LacG-deficient strains.
    Simons G; Nijhuis M; de Vos WM
    J Bacteriol; 1993 Aug; 175(16):5168-75. PubMed ID: 8349556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of lactose-fermenting revertants from lactose-negative Streptococcus lactis C2 mutants.
    Cords BR; McKay LL
    J Bacteriol; 1974 Sep; 119(3):830-9. PubMed ID: 4368487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of the phosphoenolpyruvate:lactose phosphotransferase system and activation of a cytoplasmic sugar-phosphate phosphatase in Lactococcus lactis by ATP-dependent metabolite-activated phosphorylation of serine 46 in the phosphocarrier protein HPr.
    Ye JJ; Reizer J; Cui X; Saier MH
    J Biol Chem; 1994 Apr; 269(16):11837-44. PubMed ID: 8163482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of lactose-phosphoenolpyruvate-dependent phosphotransferase system and beta-D-phosphogalactoside galactohydrolase activities in Lactobacillus casei.
    Chassy BM; Thompson J
    J Bacteriol; 1983 Jun; 154(3):1195-203. PubMed ID: 6406426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the phosphoenolpyruvate-dependent glucose phosphotransferase system of Streptococcus mutans GS5 in the regulation of lactose uptake.
    Liberman ES; Bleiweis AS
    Infect Immun; 1984 Feb; 43(2):536-42. PubMed ID: 6420344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the lactose plasmid on the metabolism of galactose by Streptococcus lactis.
    LeBlanc DJ; Crow VL; Lee LN; Garon CF
    J Bacteriol; 1979 Feb; 137(2):878-84. PubMed ID: 106044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation, characterization and nucleotide sequence of the Streptococcus mutans lactose-specific enzyme II (lacE) gene of the PTS and the phospho-beta-galactosidase (lacG) gene.
    Honeyman AL; Curtiss R
    J Gen Microbiol; 1993 Nov; 139(11):2685-94. PubMed ID: 8277252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lactose metabolism in Streptococcus lactis: studies with a mutant lacking glucokinase and mannose-phosphotransferase activities.
    Thompson J; Chassy BM; Egan W
    J Bacteriol; 1985 Apr; 162(1):217-23. PubMed ID: 3920203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short communication: Enzymatic perspective of galactosidases reveals variations in lactose metabolism among Lactococcus lactis strains.
    Yang Y; Li N; Jiang Y; Liu Z; Liu X; Zhao J; Zhang H; Chen W
    J Dairy Sci; 2019 Jul; 102(7):6027-6031. PubMed ID: 31056324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of a beta-galactosidase gene from Clostridium acetobutylicum in Lactococcus lactis subsp. lactis.
    Pillidge CJ; Pearce LE
    J Appl Bacteriol; 1991 Jul; 71(1):78-85. PubMed ID: 1910034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternative lactose catabolic pathway in Lactococcus lactis IL1403.
    Aleksandrzak-Piekarczyk T; Kok J; Renault P; Bardowski J
    Appl Environ Microbiol; 2005 Oct; 71(10):6060-9. PubMed ID: 16204522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of phosphoenolpyruvate in the catabolism of caries-conducive disaccharides by Streptococcus mutans: lactose transport.
    Calmes R
    Infect Immun; 1978 Mar; 19(3):934-42. PubMed ID: 246429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Relief effect of beta-galactosidase genetically engineered lactococcus lactis on the cell toxicity caused by lactose].
    Liu X; Lü XY; Yu Q; Zhang CW
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2006 Jan; 37(1):52-4. PubMed ID: 16468641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.