These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 6419088)
1. The role of rutin and quercitrin in stimulating flavonol glycosidase activity by cultured cell-free microbial preparations of human feces and saliva. Macdonald IA; Mader JA; Bussard RG Mutat Res; 1983 Nov; 122(2):95-102. PubMed ID: 6419088 [TBL] [Abstract][Full Text] [Related]
2. Effect of bile acids on formation of the mutagen, quercetin, from two flavonol glycoside precursors by human gut bacterial preparations. Mader JA; Macdonald IA Mutat Res; 1985 Mar; 155(3):99-104. PubMed ID: 3883158 [TBL] [Abstract][Full Text] [Related]
3. Mutagenicity of rutin and the glycosidic activity of cultured cell-free microbial preparations of human faeces and saliva. Laires A; Pacheco P; Rueff J Food Chem Toxicol; 1989 Jul; 27(7):437-43. PubMed ID: 2777147 [TBL] [Abstract][Full Text] [Related]
4. Rutin-induced beta-glucosidase activity in Streptococcus faecium VGH-1 and Streptococcus sp. strain FRP-17 isolated from human feces: formation of the mutagen, quercetin, from rutin. MacDonald IA; Bussard RG; Hutchison DM; Holdeman LV Appl Environ Microbiol; 1984 Feb; 47(2):350-5. PubMed ID: 6424566 [TBL] [Abstract][Full Text] [Related]
5. Isolation and characterization of human intestinal Enterococcus avium EFEL009 converting rutin to quercetin. Shin NR; Moon JS; Shin SY; Li L; Lee YB; Kim TJ; Han NS Lett Appl Microbiol; 2016 Jan; 62(1):68-74. PubMed ID: 26505733 [TBL] [Abstract][Full Text] [Related]
6. Hydrolysis of dietary flavonoid glycosides by strains of intestinal Bacteroides from humans. Bokkenheuser VD; Shackleton CH; Winter J Biochem J; 1987 Dec; 248(3):953-6. PubMed ID: 3435494 [TBL] [Abstract][Full Text] [Related]
7. Identification of rutin deglycosylated metabolites produced by human intestinal bacteria using UPLC-Q-TOF/MS. Yang J; Qian D; Jiang S; Shang EX; Guo J; Duan JA J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Jun; 898():95-100. PubMed ID: 22583754 [TBL] [Abstract][Full Text] [Related]
8. Activation of rutin by human oral bacterial isolates to the carcinogen-mutagen quercetin. Parisis DM; Pritchard ET Arch Oral Biol; 1983; 28(7):583-90. PubMed ID: 6579892 [TBL] [Abstract][Full Text] [Related]
9. Development of fecal microbial enzyme mix for mutagenicity assay of natural products. Yeo HK; Hyun YJ; Jang SE; Han MJ; Lee YS; Kim DH J Microbiol Biotechnol; 2012 Jun; 22(6):838-48. PubMed ID: 22573163 [TBL] [Abstract][Full Text] [Related]
10. Quercetin production from rutin by a thermostable β-rutinosidase from Pyrococcus furiosus. Nam HK; Hong SH; Shin KC; Oh DK Biotechnol Lett; 2012 Mar; 34(3):483-9. PubMed ID: 22052256 [TBL] [Abstract][Full Text] [Related]
11. Potential mutagenic activity of some vitamin preparations in the human gut. Mader JA; Macdonald IA Appl Environ Microbiol; 1984 Oct; 48(4):902-4. PubMed ID: 6508299 [TBL] [Abstract][Full Text] [Related]
12. Biotransformation of rutin to isoquercitrin using recombinant α-L-rhamnosidase from Bifidobacterium breve. Zhang R; Zhang BL; Xie T; Li GC; Tuo Y; Xiang YT Biotechnol Lett; 2015 Jun; 37(6):1257-64. PubMed ID: 25724715 [TBL] [Abstract][Full Text] [Related]
13. Quercetin derivatives are deconjugated and converted to hydroxyphenylacetic acids but not methylated by human fecal flora in vitro. Aura AM; O'Leary KA; Williamson G; Ojala M; Bailey M; Puupponen-Pimiä R; Nuutila AM; Oksman-Caldentey KM; Poutanen K J Agric Food Chem; 2002 Mar; 50(6):1725-30. PubMed ID: 11879065 [TBL] [Abstract][Full Text] [Related]
14. Carboxymethyl cellulase and cellobiase production by Clostridium acetobutylicum in an industrial fermentation medium. Allcock ER; Woods DR Appl Environ Microbiol; 1981 Feb; 41(2):539-41. PubMed ID: 6786219 [TBL] [Abstract][Full Text] [Related]
16. Transformation of rutin to antiproliferative quercetin-3-glucoside by Aspergillus niger. You HJ; Ahn HJ; Ji GE J Agric Food Chem; 2010 Oct; 58(20):10886-92. PubMed ID: 20886886 [TBL] [Abstract][Full Text] [Related]
17. Preparatory production of quercetin-3-β-D-glucopyranoside using alkali-tolerant thermostable α-L-rhamnosidase from Aspergillus terreus. Weignerová L; Marhol P; Gerstorferová D; Křen V Bioresour Technol; 2012 Jul; 115():222-7. PubMed ID: 21890350 [TBL] [Abstract][Full Text] [Related]
18. In vivo quercitrin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the NF-kappaB pathway. Comalada M; Camuesco D; Sierra S; Ballester I; Xaus J; Gálvez J; Zarzuelo A Eur J Immunol; 2005 Feb; 35(2):584-92. PubMed ID: 15668926 [TBL] [Abstract][Full Text] [Related]
19. Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta-glucosidase activity. Day AJ; DuPont MS; Ridley S; Rhodes M; Rhodes MJ; Morgan MR; Williamson G FEBS Lett; 1998 Sep; 436(1):71-5. PubMed ID: 9771896 [TBL] [Abstract][Full Text] [Related]
20. A beta-rutinosidase from Penicillium rugulosum IFO 7242 that is a peculiar flavonoid glycosidase. Narikawa T; Shinoyama H; Fujii T Biosci Biotechnol Biochem; 2000 Jun; 64(6):1317-9. PubMed ID: 10923813 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]