These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 6419179)
1. Antinociceptive effects of thyrotrophin-releasing hormone and its analogues in the rat periaqueductal grey region. Webster VA; Griffiths EC; Slater P Neurosci Lett; 1983 Nov; 42(1):67-70. PubMed ID: 6419179 [TBL] [Abstract][Full Text] [Related]
2. Site-specific modulation of morphine and swim-induced antinociception following thyrotropin-releasing hormone in the rat periaqueductal gray. Robertson JA; Bodnar RJ Pain; 1993 Oct; 55(1):71-84. PubMed ID: 8278212 [TBL] [Abstract][Full Text] [Related]
3. Hyperthermia and antinociceptive activity of thyrotropin-releasing hormone and morphine following central administration in rats. Zhukov VN; Yakimova KS; Shamyakina IY Acta Physiol Pharmacol Bulg; 1988; 14(2):18-23. PubMed ID: 3146885 [TBL] [Abstract][Full Text] [Related]
4. The antinociceptive effects of histidyl-proline diketopiperazine and thyrotropin-releasing hormone in the mouse. Kawamura S; Sakurada S; Sakurada T; Kisara K; Sasaki Y; Suzuki K Eur J Pharmacol; 1985 Jun; 112(3):287-94. PubMed ID: 3926517 [TBL] [Abstract][Full Text] [Related]
5. Induction of wet-dog shaking in rats by analogues and metabolites of thyrotrophin-releasing hormone (TRH). Webster VA; Griffiths EC; Slater P Regul Pept; 1982 Dec; 5(1):43-51. PubMed ID: 6820171 [TBL] [Abstract][Full Text] [Related]
6. Effect of precipitated morphine withdrawal on post-translational processing of prothyrotropin releasing hormone (proTRH) in the ventrolateral column of the midbrain periaqueductal gray. Nillni EA; Lee A; Legradi G; Lechan RM J Neurochem; 2002 Mar; 80(5):874-84. PubMed ID: 11948251 [TBL] [Abstract][Full Text] [Related]
7. Effects of mammalian and avian neurotensins and neurotensin fragments on wet-dog shaking and body temperature in the rat. Widdowson PS; Griffiths EC; Slater P; Yajima H Regul Pept; 1983 Dec; 7(4):357-65. PubMed ID: 6422514 [TBL] [Abstract][Full Text] [Related]
8. Opioid involvement in TRH-induced antinociception in the rat following intracerebral administration. Reny-Palasse V; Monier C; Rips R Pain; 1989 Aug; 38(2):193-201. PubMed ID: 2506505 [TBL] [Abstract][Full Text] [Related]
9. Antagonism of TRH-induced wet-dog shaking in rats by neurotensin and a neurotensin fragment. Griffiths EC; Widdowson PS; Slater P Neurosci Lett; 1982 Aug; 31(2):171-4. PubMed ID: 6813775 [No Abstract] [Full Text] [Related]
11. Dorsal periaqueductal gray matter-evoked panic-like behaviors are markedly inhibited by a low peripheral dose of thyrotropin releasing hormone. Siqueira CC; Rossoni RR; Schenberg LC Psychoneuroendocrinology; 2010 Feb; 35(2):262-71. PubMed ID: 19631472 [TBL] [Abstract][Full Text] [Related]
12. The hypothermic action of carbachol in the rat brain periaqueductal grey area may involve neurotensin. Griffiths EC; Slater P; Widdowson PS Br J Pharmacol; 1986 Jul; 88(3):653-8. PubMed ID: 3742153 [TBL] [Abstract][Full Text] [Related]
13. The synthetic TRH analogue taltirelin exerts modality-specific antinociceptive effects via distinct descending monoaminergic systems. Tanabe M; Tokuda Y; Takasu K; Ono K; Honda M; Ono H Br J Pharmacol; 2007 Feb; 150(4):403-14. PubMed ID: 17220907 [TBL] [Abstract][Full Text] [Related]
14. Comparison of the antinociceptive action of mu and delta opioid receptor ligands in the periaqueductal gray matter, medial and paramedial ventral medulla in the rat as studied by the microinjection technique. Jensen TS; Yaksh TL Brain Res; 1986 May; 372(2):301-12. PubMed ID: 2871901 [TBL] [Abstract][Full Text] [Related]
15. Antinociceptive properties of thyrotropin releasing hormone in mice: comparison with morphine. Boschi G; Desiles M; Reny V; Rips R; Wrigglesworth S Br J Pharmacol; 1983 May; 79(1):85-92. PubMed ID: 6409194 [TBL] [Abstract][Full Text] [Related]
16. Effects of lordosis-relevant neuropeptides on midbrain periaqueductal gray neuronal activity in vitro. Ogawa S; Kow LM; Pfaff DW Peptides; 1992; 13(5):965-75. PubMed ID: 1282709 [TBL] [Abstract][Full Text] [Related]
17. Opiate withdrawal increases ProTRH gene expression in the ventrolateral column of the midbrain periaqueductal gray. Légrádi G; Rand WM; Hitz S; Nillni EA; Jackson IM; Lechan RM Brain Res; 1996 Aug; 729(1):10-19. PubMed ID: 8874872 [TBL] [Abstract][Full Text] [Related]
18. The antinociceptive effects of SCH-32615, a neutral endopeptidase (enkephalinase) inhibitor, microinjected into the periaqueductal, ventral medulla and amygdala. al-Rodhan N; Chipkin R; Yaksh TL Brain Res; 1990 Jun; 520(1-2):123-30. PubMed ID: 2207626 [TBL] [Abstract][Full Text] [Related]
19. Effects of electrolytic lesion of dorsolateral periaqueductal gray on analgesic response of morphine microinjected into the nucleus cuneiformis in rat. Haghparast A; Ahmad-Molaei L Neurosci Lett; 2009 Feb; 451(2):165-9. PubMed ID: 19146915 [TBL] [Abstract][Full Text] [Related]
20. Rutin antinociception involves opioidergic mechanism and descending modulation of ventrolateral periaqueductal grey matter in rats. Hernandez-Leon A; Fernández-Guasti A; González-Trujano ME Eur J Pain; 2016 Feb; 20(2):274-83. PubMed ID: 25919941 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]