BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 6419771)

  • 1. Nonactivated phosphorylase kinase is a phosphoprotein: differentiation of two classes of endogenous phosphoserine residues by phosphorus-31 nuclear magnetic resonance spectroscopy and phosphatase sensitivity.
    Kilimann MW; Schnackerz KD; Heilmeyer LM
    Biochemistry; 1984 Jan; 23(1):112-7. PubMed ID: 6419771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the phosphoserine of pepsinogen using 31P nuclear magnetic resonance: corroboration of X-ray crystallographic results.
    Williams SP; Bridger WA; James MN
    Biochemistry; 1986 Oct; 25(21):6655-9. PubMed ID: 3098290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization of phosphoserine residues in the alpha subunit of rabbit skeletal muscle phosphorylase kinase.
    Meyer HE; Meyer GF; Dirks H; Heilmeyer LM
    Eur J Biochem; 1990 Mar; 188(2):367-76. PubMed ID: 2108025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation by phosphorylase kinase of phosphoprotein phosphatase activity: simultaneous control of protein phosphorylation and dephosphorylation in skeletal muscle.
    Gergely P; Bot G
    Acta Biochim Biophys Acad Sci Hung; 1981; 16(3-4):163-78. PubMed ID: 6291302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorus-31 nuclear magnetic resonance study of the active site phosphohistidine and regulatory phosphoserine residues of rat liver ATP-citrate lyase.
    Williams SP; Sykes BD; Bridger WA
    Biochemistry; 1985 Sep; 24(20):5527-31. PubMed ID: 3935162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 31P nuclear magnetic resonance of phosphoenzyme intermediates of alkaline phosphatase.
    Gettins P; Coleman JE
    J Biol Chem; 1983 Jan; 258(1):408-16. PubMed ID: 6336753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorus-31 nuclear magnetic resonance studies of the two phosphoserine residues of hen egg white ovalbumin.
    Vogel HJ; Bridger WA
    Biochemistry; 1982 Nov; 21(23):5825-31. PubMed ID: 6295445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycogen synthase from rabbit skeletal muscle; effect of insulin on the state of phosphorylation of the seven phosphoserine residues in vivo.
    Parker PJ; Caudwell FB; Cohen P
    Eur J Biochem; 1983 Jan; 130(1):227-34. PubMed ID: 6402364
    [No Abstract]   [Full Text] [Related]  

  • 9. Stimulating effect of phosphatidic acid on autophosphorylation of phosphorylase kinase.
    Negami AI; Sasaki H; Yamamura H
    Biochem Biophys Res Commun; 1985 Sep; 131(2):712-9. PubMed ID: 4052070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active-site serine phosphate and histidine residues of phosphoglucomutase: pH titration studies monitored by 1H and 31P NMR spectroscopy.
    Rhyu GI; Ray WJ; Markley JL
    Biochemistry; 1985 Aug; 24(18):4746-53. PubMed ID: 2934085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrolysis of phosphoproteins and inositol phosphates by cell surface phosphatase of Leishmania donovani.
    Das S; Saha AK; Remaley AT; Glew RH; Dowling JN; Kajiyoshi M; Gottlieb M
    Mol Biochem Parasitol; 1986 Aug; 20(2):143-53. PubMed ID: 3018559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorus-31 nuclear magnetic resonance studies of phosphorylated proteins.
    Brauer M; Sykes BD
    Methods Enzymol; 1984; 107():36-81. PubMed ID: 6503717
    [No Abstract]   [Full Text] [Related]  

  • 13. Effect of citrulline for arginine replacement on the structure and turnover of phosphopeptide substrates of protein phosphatase-1.
    Martin BL; Luo S; Kintanar A; Chen M; Graves DJ
    Arch Biochem Biophys; 1998 Nov; 359(2):179-91. PubMed ID: 9808759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 31P nuclear magnetic resonance study of alkaline phosphatase: the role of inorganic phosphate in limiting the enzyme turnover rate at alkaline pH.
    Hull WE; Halford SE; Gutfreund H; Sykes BD
    Biochemistry; 1976 Apr; 15(7):1547-61. PubMed ID: 4092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the in vivo phosphorylation state of protein phosphatase inhibitor-2 from rabbit skeletal muscle by fast-atom bombardment mass spectrometry.
    Holmes CF; Tonks NK; Major H; Cohen P
    Biochim Biophys Acta; 1987 Jul; 929(2):208-19. PubMed ID: 3036252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR studies of the phosphoserine regions of bovine alpha s1- and beta-casein. Assignment of 31P resonances to specific phosphoserines and cation binding studied by measurement of enhancement of 1H relaxation rate.
    Sleigh RW; Mackinlay AG; Pope JM
    Biochim Biophys Acta; 1983 Jan; 742(1):175-83. PubMed ID: 6402019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 31P NMR of alkaline phosphatase. Saturation transfer and metal-phosphorus coupling.
    Otvos JD; Alger JR; Coleman JE; Armitage IM
    J Biol Chem; 1979 Mar; 254(6):1778-80. PubMed ID: 33981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency-dependent phosphorus-31 nuclear magnetic resonance studies of the phosphohistidine residue to succinyl-CoA synthetase and the phosphoserine residue of glycogen phosphorylase a.
    Vogel HJ; Bridger WA; Sykes BD
    Biochemistry; 1982 Mar; 21(6):1126-32. PubMed ID: 6803832
    [No Abstract]   [Full Text] [Related]  

  • 19. Interaction of phosphorylase kinase with polymyxins.
    Ktenas TB; Sotiroudis TG; Nikolaropoulos S; Evangelopoulos AE
    Biochem Biophys Res Commun; 1985 Dec; 133(3):891-6. PubMed ID: 3002374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the substrate specificities of protein phosphatases involved in the regulation of glycogen metabolism in rabbit skeletal muscle.
    Antoniw JF; Nimmo HG; Yeaman SJ; Cohen P
    Biochem J; 1977 Feb; 162(2):423-33. PubMed ID: 192224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.