These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Interactions of voltage-sensing dyes with membranes. I. Steady-state permeability behaviors induced by cyanine dyes. Krasne S Biophys J; 1980 Jun; 30(3):415-39. PubMed ID: 7260282 [TBL] [Abstract][Full Text] [Related]
6. Interactions of voltage-sensing dyes with membranes. II. Spectrophotometric and electrical correlates of cyanine-dye adsorption to membranes. Krasne S Biophys J; 1980 Jun; 30(3):441-62. PubMed ID: 7260283 [TBL] [Abstract][Full Text] [Related]
7. Spectral properties of fluorescent dyes in lecithin vesicles. Probes for the structure of lipid bilayer membranes and for membrane potentials. Pohl GW Z Naturforsch C Biosci; 1976; 31(9-10):575-88. PubMed ID: 136128 [TBL] [Abstract][Full Text] [Related]
8. Reversible electrical breakdown of lipid bilayer membranes: a charge-pulse relaxation study. Benz R; Beckers F; Zimmermann U J Membr Biol; 1979 Jul; 48(2):181-204. PubMed ID: 480336 [TBL] [Abstract][Full Text] [Related]
9. Interactions of voltage-sensing dyes with membranes. III. Electrical properties induced by merocyanine 540. Krasne S Biophys J; 1983 Dec; 44(3):305-14. PubMed ID: 6661489 [TBL] [Abstract][Full Text] [Related]
10. Formation of a leakage-type ion pathway in lipid bilayer membranes by divalent cationic cyanine dyes in cooperation with inorganic phosphate. Role of the cyanine dye in uncoupling of oxidative phosphorylation. Takeguchi N; Saitoh T; Morii M; Yoshikawa K; Terada H J Biol Chem; 1985 Aug; 260(16):9158-61. PubMed ID: 4019467 [TBL] [Abstract][Full Text] [Related]
11. Fluorescence spectroscopy of an oriented model membrane. Yguerabide J; Stryer L Proc Natl Acad Sci U S A; 1971 Jun; 68(6):1217-21. PubMed ID: 5288369 [TBL] [Abstract][Full Text] [Related]
12. Voltage transients from photo-isomerizing azo dye in bilayer membranes. Duchek JR; Huebner JS Biophys J; 1979 Aug; 27(2):317-21. PubMed ID: 262438 [TBL] [Abstract][Full Text] [Related]
14. Voltage-clamp experiments on oxidized cholesterol membranes modified with excitability-inducing material and comparison with a model. Hoffman RA; Long DD; Arndt RA; Roper LD Biochim Biophys Acta; 1976 Dec; 455(3):780-95. PubMed ID: 999940 [TBL] [Abstract][Full Text] [Related]
15. A surface potential change in the membranes of frog skeletal muscle is associated with excitation-contraction coupling. Jong DS; Stroffekova K; Heiny JA J Physiol; 1997 Mar; 499 ( Pt 3)(Pt 3):787-808. PubMed ID: 9130173 [TBL] [Abstract][Full Text] [Related]
16. Properties of the conductance induced in lecithin bilayer membranes by alamethicin. Roy G J Membr Biol; 1975 Oct; 24(1):71-85. PubMed ID: 1195353 [TBL] [Abstract][Full Text] [Related]
17. Adsorption and photodynamic efficiency of meso-tetrakis(p-sulfonatophenyl)porphyrin on the surface of bilayer lipid membranes. Konstantinova AN; Sokolov VS; Jiménez-Munguía I; Finogenova OA; Ermakov YA; Gorbunova YG J Photochem Photobiol B; 2018 Dec; 189():74-80. PubMed ID: 30316028 [TBL] [Abstract][Full Text] [Related]
18. Spectral properties and orientation of voltage-sensitive dyes in lipid membranes. Matson M; Carlsson N; Beke-Somfai T; Nordén B Langmuir; 2012 Jul; 28(29):10808-17. PubMed ID: 22738247 [TBL] [Abstract][Full Text] [Related]
19. Fluorescent styryl dyes of the RH series affect a potential drop on the membrane/solution boundary. Malkov DY; Sokolov VS Biochim Biophys Acta; 1996 Jan; 1278(2):197-204. PubMed ID: 8593277 [TBL] [Abstract][Full Text] [Related]
20. Voltage-dependent translocation of R18 and DiI across lipid bilayers leads to fluorescence changes. Melikyan GB; Deriy BN; Ok DC; Cohen FS Biophys J; 1996 Nov; 71(5):2680-91. PubMed ID: 8913605 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]