These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Radiation damage relative to transmission electron microscopy of biological specimens at low temperature: a review. Glaeser RM; Taylor KA J Microsc; 1978 Jan; 112(1):127-38. PubMed ID: 347079 [TBL] [Abstract][Full Text] [Related]
4. Electron microscopy of frozen hydrated sections of vitreous ice and vitrified biological samples. McDowall AW; Chang JJ; Freeman R; Lepault J; Walter CA; Dubochet J J Microsc; 1983 Jul; 131(Pt 1):1-9. PubMed ID: 6350598 [TBL] [Abstract][Full Text] [Related]
5. Electron diffraction of frozen, hydrated protein crystals. Taylor KA; Glaeser RM Science; 1974 Dec; 186(4168):1036-7. PubMed ID: 4469695 [TBL] [Abstract][Full Text] [Related]
6. Transfer, observation and analysis of frozen hydrated specimens. Hax WM; Lichtenegger S J Microsc; 1982 Jun; 126(Pt 3):275-84. PubMed ID: 7097762 [TBL] [Abstract][Full Text] [Related]
7. On the freezing and identification of lipid monolayer 2-D arrays for cryoelectron microscopy. Taylor DW; Kelly DF; Cheng A; Taylor KA J Struct Biol; 2007 Dec; 160(3):305-12. PubMed ID: 17561414 [TBL] [Abstract][Full Text] [Related]
8. Protein-lipid-lipopolysaccharide association in the superficial layer of Spirillum serpens cell walls. Chester IR; Murray RG J Bacteriol; 1978 Feb; 133(2):932-41. PubMed ID: 627537 [TBL] [Abstract][Full Text] [Related]
9. Ultrastructural aspects of localized membrane damage in Spirillum serpens VHL early in its association with Bdellovibrio bacteriovorus 109D. Snellen JE; Starr MP Arch Microbiol; 1974; 100(3):179-95. PubMed ID: 4615643 [No Abstract] [Full Text] [Related]
11. Electron microscopy of frozen hydrated biological specimens. Taylor KA; Glaeser RM J Ultrastruct Res; 1976 Jun; 55(3):448-56. PubMed ID: 933264 [No Abstract] [Full Text] [Related]
12. Effects of radiation damage with 400-kV electrons on frozen, hydrated actin bundles. Schmid MF; Jakana J; Matsudaira P; Chiu W J Struct Biol; 1992; 108(1):62-8. PubMed ID: 1562434 [TBL] [Abstract][Full Text] [Related]
13. Alterations in the cell wall of Spirillum serpens VHL early in its association with Bdellovibrio bacteriovorus 109D. Snellen JE; Starr MP Arch Microbiol; 1976 May; 108(1):55-64. PubMed ID: 818972 [TBL] [Abstract][Full Text] [Related]
14. General considerations of X-ray microanalysis of frozen hydrated tissue sections. Saubermann AJ Scan Electron Microsc; 1979; (2):607-17. PubMed ID: 392721 [TBL] [Abstract][Full Text] [Related]
15. Structure of wet specimens in electron microscopy. Improved environmental chambers make it possible to examine wet specimens easily. Parsons DF Science; 1974 Nov; 186(4162):407-14. PubMed ID: 4213401 [TBL] [Abstract][Full Text] [Related]
16. Structure of the surface layer protein of the outer membrane of Spirillum serpens. Glaeser RM; Chiu W; Grano D J Ultrastruct Res; 1979 Mar; 66(3):235-42. PubMed ID: 439191 [No Abstract] [Full Text] [Related]
17. The resolution dependence of optimal exposures in liquid nitrogen temperature electron cryomicroscopy of catalase crystals. Baker LA; Smith EA; Bueler SA; Rubinstein JL J Struct Biol; 2010 Mar; 169(3):431-7. PubMed ID: 19958834 [TBL] [Abstract][Full Text] [Related]
18. Electron microscopy of frozen-hydrated biological material. Stewart M; Vigers G Nature; 1986 Feb 20-26; 319(6055):631-6. PubMed ID: 3951536 [TBL] [Abstract][Full Text] [Related]
19. Structure of CaATPase: electron microscopy of frozen-hydrated crystals at 6 A resolution in projection. Stokes DL; Green NM J Mol Biol; 1990 Jun; 213(3):529-38. PubMed ID: 2141088 [TBL] [Abstract][Full Text] [Related]
20. Progress in scanning electron microscopy of frozen-hydrated biological specimens. Hermann R; Müller M Scanning Microsc; 1993 Mar; 7(1):343-9; discussion 349-50. PubMed ID: 8316804 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]