BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 6420406)

  • 21. Calcium pool size modulates the sensitivity of the ryanodine receptor channel and calcium-dependent ATPase of heavy sarcoplasmic reticulum to extravesicular free calcium concentration.
    Marie V; Silva JE
    J Cell Physiol; 1998 Jun; 175(3):283-94. PubMed ID: 9572473
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of fatty acids in ischemic tissue injury: difference between oleic and palmitic acid.
    Piper HM; Das A
    Basic Res Cardiol; 1986; 81(4):373-83. PubMed ID: 3778417
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of Mg2+ on calcium accumulation by two fractions of sarcoplasmic reticulum from rabbit skeletal muscle.
    Watras J
    Biochim Biophys Acta; 1985 Jan; 812(2):333-44. PubMed ID: 2578288
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ATP-dependent phosphate transport in sarcoplasmic reticulum and reconstituted proteoliposomes.
    Carley WW; Racker E
    Biochim Biophys Acta; 1982 May; 680(2):187-93. PubMed ID: 6212081
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dependence of ionophore- and caffeine-induced calcium release from sarcoplasmic reticulum vesicles on external and internal calcium ion concentrations.
    Katz AM; Repke DI; Hasselbach W
    J Biol Chem; 1977 Mar; 252(6):1938-49. PubMed ID: 403186
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optical probe responses on sarcoplasmic reticulum: oxacarbocyanines as probes of membrane potential.
    Beeler T; Russell JT; Martonosi A
    Eur J Biochem; 1979 Apr; 95(3):579-91. PubMed ID: 376313
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of age, dietary cholic acid, and calcium levels on performance, utilization of free fatty acids, and bone mineralization in broilers.
    Atteh JO; Leeson S
    Poult Sci; 1985 Oct; 64(10):1959-71. PubMed ID: 4070130
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Magnesium permeability of sarcoplasmic reticulum. Mg2+ is not countertransported during ATP-dependent Ca2+ uptake by sarcoplasmic reticulum.
    Salama G; Scarpa A
    J Biol Chem; 1985 Sep; 260(21):11697-705. PubMed ID: 3930482
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distinct natures of beryllium fluoride-bound, aluminum fluoride-bound, and magnesium fluoride-bound stable analogues of an ADP-insensitive phosphoenzyme intermediate of sarcoplasmic reticulum Ca2+-ATPase: changes in catalytic and transport sites during phosphoenzyme hydrolysis.
    Danko S; Yamasaki K; Daiho T; Suzuki H
    J Biol Chem; 2004 Apr; 279(15):14991-8. PubMed ID: 14754887
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proton inactivation of Ca2+ transport by sarcoplasmic reticulum.
    Berman MC; McIntosh DB; Kench JE
    J Biol Chem; 1977 Feb; 252(3):994-1001. PubMed ID: 14142
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of R56865 on cardiac sarcoplasmic reticulum function and its role as an antagonist of digoxin at the sarcoplasmic reticulum calcium release channel.
    McGarry SJ; Scheufler E; Williams AJ
    Br J Pharmacol; 1995 Jan; 114(1):231-7. PubMed ID: 7712023
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of calcium ionophores on fragmented sarcoplasmic reticulum.
    Scarpa A; Baldassare J; Inesi G
    J Gen Physiol; 1972 Dec; 60(6):735-49. PubMed ID: 4264855
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Formation of magnesium-phosphoenzyme and magnesium-calcium-phosphoenzyme in the phosphorylation of adenosine triphosphatase by orthophosphate in sarcoplasmic reticulum. Models of a reaction sequence.
    Suko J; Plank B; Preis P; Kolassa N; Hellmann G; Conca W
    Eur J Biochem; 1981 Oct; 119(2):225-36. PubMed ID: 6458492
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calcium transport by sarcoplasmic reticulum of vascular smooth muscle: I. MgATP-dependent and MgATP-independent calcium uptake.
    Stout MA
    J Cell Physiol; 1991 Dec; 149(3):383-95. PubMed ID: 1744170
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence that trypsin digestion exposes a channel in the sarcoplasmic reticulum membrane.
    Toogood KC; Folsom B; Topping T; McCutchan H; Dolejsi MJ; Johns S; Stuart G; Dunker AK
    Membr Biochem; 1983; 5(1):49-75. PubMed ID: 6316107
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fatty acids modulate calcium-induced calcium release from skeletal muscle heavy sarcoplasmic reticulum fractions: implications for malignant hyperthermia.
    Fletcher JE; Tripolitis L; Erwin K; Hanson S; Rosenberg H; Conti PA; Beech J
    Biochem Cell Biol; 1990 Oct; 68(10):1195-201. PubMed ID: 2125224
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanism of ATP hydrolysis by sarcoplasmic reticulum and the role of phospholipids.
    Nakamura H; Jilka RL; Boland R; Martonosi AN
    J Biol Chem; 1976 Sep; 251(17):5414-23. PubMed ID: 134038
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparation and characterization of longitudinal tubules of sarcoplasmic reticulum from fast skeletal muscle.
    Chu A; Saito A; Fleischer S
    Arch Biochem Biophys; 1987 Oct; 258(1):13-23. PubMed ID: 2444161
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activation of the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum by palmitoyl carnitine.
    el-Hayek R; Valdivia C; Valdivia HH; Hogan K; Coronado R
    Biophys J; 1993 Aug; 65(2):779-89. PubMed ID: 8218902
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Involvement of sarco/endoplasmic reticulum calcium ATPase-mediated calcium flux in the protective effect of oleic acid against lipotoxicity in hepatocytes.
    Ogino N; Miyagawa K; Kusanaga M; Hayashi T; Minami S; Oe S; Honma Y; Harada M
    Exp Cell Res; 2019 Dec; 385(1):111651. PubMed ID: 31568762
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.