These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 6421235)

  • 1. Uptake, retention, and efflux of Ca2+ by mitochondrial preparations from skeletal muscle.
    Allshire AP; Heffron JJ
    Arch Biochem Biophys; 1984 Jan; 228(1):353-63. PubMed ID: 6421235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Release of Ca2+ and Mg2+ from yeast mitochondria is stimulated by increased ionic strength.
    Bradshaw PC; Pfeiffer DR
    BMC Biochem; 2006 Feb; 7():4. PubMed ID: 16460565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium transport and inner mitochondrial membrane damage in renal cortical mitochondria.
    Weinberg JM; Humes HD
    Am J Physiol; 1985 Jun; 248(6 Pt 2):F876-89. PubMed ID: 4003558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aspects of energy-linked calcium accumulation by rat heart mitochondria.
    Jacobus WE; Tiozzo R; Lugli G; Lehninger AL; Carafoli E
    J Biol Chem; 1975 Oct; 250(19):7863-70. PubMed ID: 1176452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The interrelations between the transport of sodium and calcium in mitochondria of various mammalian tissues.
    Crompton M; Moser R; Lüdi H; Carafoli E
    Eur J Biochem; 1978 Jan; 82(1):25-31. PubMed ID: 23291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence of a calcium-ion-transport system in mitochondria isolated from flight muscle of the developing sheep blowfly Lucilia cuprina.
    Bygrave FL; Daday AA; Doy FA
    Biochem J; 1975 Mar; 146(3):601-8. PubMed ID: 807204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ADP-activated calcium ion exchange in sarcoplasmic reticulum vesicles.
    Beirăo PS; De Meis L
    Biochim Biophys Acta; 1976 May; 433(3):520-30. PubMed ID: 819033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial calcium transport and calcium-activated phospholipase in porcine malignant hyperthermia.
    Cheah KS; Cheah AM
    Biochim Biophys Acta; 1981 Jan; 634(1):70-84. PubMed ID: 7470500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the state of calcium ions in isolated rat liver mitochondria. II. Effects of phosphate and pH on Ca2+-induced Ca2+ release.
    Blaich G; Krell H; Täfler M; Pfaff E
    Hoppe Seylers Z Physiol Chem; 1984 Jan; 365(1):73-82. PubMed ID: 6201430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Further studies on the effect of phosphoenolpyruvate on respiration-dependent calcium transport by rat heart mitochondria.
    Chudapongse P
    Biochim Biophys Acta; 1976 Feb; 423(2):196-202. PubMed ID: 1247607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Various properties of the creatine transport system and the location of creatine kinase in skeletal muscle mitochondria].
    Lipskaia TI; Goloveshkina VG
    Biokhimiia; 1975; 40(5):942-50. PubMed ID: 2328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversal of impaired oxidative phosphorylation and calcium overloading in the skeletal muscle mitochondria of CHF-146 dystrophic hamsters.
    Bhattacharya SK; Johnson PL; Thakar JH
    Mol Chem Neuropathol; 1998 May; 34(1):53-77. PubMed ID: 9778646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cold-induced changes in Ca2+ transport in duckling skeletal muscle mitochondria.
    Barré H; Nedergaard J
    Am J Physiol; 1987 Jun; 252(6 Pt 2):R1046-54. PubMed ID: 3591977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Respiratory and calcium transport properties of spiny lobster hepatopancreas mitochondria.
    Tsokos J; Kreisberg R; Michaels A; Komm B; Linton J
    Arch Biochem Biophys; 1983 Jul; 224(2):707-17. PubMed ID: 6870285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on mitochondria from dystrophic skeletal muscle of mice.
    Liang RC
    Biochem Med Metab Biol; 1986 Oct; 36(2):172-8. PubMed ID: 3096352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of ADP in the modulation of the calcium-efflux pathway in rat brain mitochondria.
    Vitorica J; Satrústegui J
    Biochem J; 1985 Jan; 225(1):41-9. PubMed ID: 3977831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological significance of Ca uptake by mitochondria in the heart in comparison with that by cardiac sarcoplasmic reticulum.
    Kitazawa T
    J Biochem; 1976 Nov; 80(5):1129-47. PubMed ID: 12152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of skeletal muscle mitochondria from hamsters using an ionic medium containing ethylenediaminetetraacetic acid and nagarse.
    Bhattacharya SK; Thakar JH; Johnson PL; Shanklin DR
    Anal Biochem; 1991 Feb; 192(2):344-9. PubMed ID: 1903610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxaloacetate- and acetoacetate-induced calcium efflux from mitochondria occurs by reversal of the uptake pathway.
    Bardsley ME; Brand MD
    Biochem J; 1982 Jan; 202(1):197-201. PubMed ID: 7082307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation of calcium-ion efflux from liver mitochondria by sodium ions and its response to ADP and energy state.
    Heffron JJ; Harris EJ
    Biochem J; 1981 Mar; 194(3):925-9. PubMed ID: 6171263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.