These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 6422030)

  • 1. Alpha-adrenergic stimulation of potassium efflux in guinea-pig hepatocytes may involve calcium influx and calcium release.
    DeWitt LM; Putney JW
    J Physiol; 1984 Jan; 346():395-407. PubMed ID: 6422030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of quinine and apamin on the calcium-dependent potassium permeability of mammalian hepatocytes and red cells.
    Burgess GM; Claret M; Jenkinson DH
    J Physiol; 1981 Aug; 317():67-90. PubMed ID: 6273550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does calcium mediate the increase in potassium permeability due to phenylephrine or angiotensin II in the liver?
    Weiss SJ; Putney JW
    J Pharmacol Exp Ther; 1978 Dec; 207(3):669-76. PubMed ID: 366104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epinephrine-stimulated maintained rubidium efflux from guinea pig hepatocytes may involve alpha 1- and alpha 2-adrenoceptors.
    Henley JM
    Mol Pharmacol; 1985 Nov; 28(5):431-5. PubMed ID: 2997595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulation of glycogenolysis in hepatocytes by angiotensin II may involve both calcium release and calcium influx.
    DeWitt LM; Putney JW
    FEBS Lett; 1983 Aug; 160(1-2):259-63. PubMed ID: 6884512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of angiotensin II, ATP, and ionophore A23187 on potassium efflux in adrenal glomerulosa cells.
    Lobo MV; Marusic ET
    Am J Physiol; 1986 Feb; 250(2 Pt 1):E125-30. PubMed ID: 3082214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The diverse effects of noradrenaline and other stimulants on 86Rb and 42K efflux in rabbit and guinea-pig arterial muscle.
    Bolton TB; Clapp LH
    J Physiol; 1984 Oct; 355():43-63. PubMed ID: 6092628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endothelium-dependent relaxation of the pig aorta: relationship to stimulation of 86Rb efflux from isolated endothelial cells.
    Gordon JL; Martin W
    Br J Pharmacol; 1983 Jun; 79(2):531-41. PubMed ID: 6418245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium-activated potassium channels in isolated presynaptic nerve terminals from rat brain.
    Bartschat DK; Blaustein MP
    J Physiol; 1985 Apr; 361():441-57. PubMed ID: 2580982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between receptors that increase cytosolic calcium and cyclic AMP in guinea-pig liver cells.
    Cocks TM; Jenkinson DH; Koller K
    Br J Pharmacol; 1984 Sep; 83(1):281-91. PubMed ID: 6091825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional involvement of alpha 1- and alpha 2-adrenoceptors in 86Rb efflux from liver slices and lipolysis in guinea-pig isolated adipocytes.
    Maroto R; Moratinos J; Sancho C
    J Auton Pharmacol; 1992 Oct; 12(5):277-90. PubMed ID: 1358889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of calcium channels by membrane receptors in the rat parotid gland.
    Marier SH; Putney JW; Van de Walle CM
    J Physiol; 1978 Jun; 279():141-51. PubMed ID: 209174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Angiotensin II causes a dual effect on potassium permeability in adrenal glomerulosa cells.
    Lobo MV; Marusic ET
    Am J Physiol; 1988 Feb; 254(2 Pt 1):E144-9. PubMed ID: 3348367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of calcium in the receptor mediated control of potassium permeability in the rat lacrimal gland.
    Parod RJ; Putney JW
    J Physiol; 1978 Aug; 281():371-81. PubMed ID: 212554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Further studies on the interactions between the calcium mobilization and cyclic AMP pathways in guinea pig hepatocytes.
    Burgess GM; Dooley RK; McKinney JS; NĂ„nberg E; Putney JW
    Mol Pharmacol; 1986 Oct; 30(4):315-20. PubMed ID: 3020389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium regulation of potassium fluxes in rabbit aorta during activation by noradrenaline or high potassium medium.
    Aaronson PI; Jones AW
    J Physiol; 1985 Oct; 367():27-43. PubMed ID: 2414440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efflux of 86Rb from rat and mouse pancreatic islets: the role of membrane depolarization.
    Matthews EK; Shotton PA
    Br J Pharmacol; 1984 Nov; 83(3):831-9. PubMed ID: 6391599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dependence on calcium of potassium- and agonist-induced changes in potassium permeability of rabbit ear artery.
    Casteels R; Droogmans G
    J Physiol; 1985 Jul; 364():151-67. PubMed ID: 2863373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphatidylinositol metabolism in rat hepatocytes stimulated by glycogenolytic hormones. Effects of angiotensin, vasopressin, adrenaline, ionophore A23187 and calcium-ion deprivation.
    Billah MM; Michell RH
    Biochem J; 1979 Sep; 182(3):661-8. PubMed ID: 229824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium and the control of potassium efflux in the sublingual gland.
    Putney JW; Leslie BA; Marier SH
    Am J Physiol; 1978 Sep; 235(3):C128-35. PubMed ID: 696815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.