These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 6422466)

  • 1. On the use of sequence homologies to predict protein structure: identical pentapeptides can have completely different conformations.
    Kabsch W; Sander C
    Proc Natl Acad Sci U S A; 1984 Feb; 81(4):1075-8. PubMed ID: 6422466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local protein sequence similarity does not imply a structural relationship.
    Sternberg MJ; Islam SA
    Protein Eng; 1990 Dec; 4(2):125-31. PubMed ID: 2075187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [A turning point in the knowledge of the structure-function-activity relations of elastin].
    Alix AJ
    J Soc Biol; 2001; 195(2):181-93. PubMed ID: 11727705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origins of structural diversity within sequentially identical hexapeptides.
    Cohen BI; Presnell SR; Cohen FE
    Protein Sci; 1993 Dec; 2(12):2134-45. PubMed ID: 8298461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical mechanical treatment of protein conformation. 6. Elimination of empirical rules for prediction by use of a high-order probability. Correlation between the amino acid sequences and conformations for homologous neurotoxin proteins.
    Tanaka S; Scheraga HA
    Macromolecules; 1977; 10(2):305-16. PubMed ID: 857093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures in globular proteins.
    Sippl MJ
    J Mol Biol; 1990 Jun; 213(4):859-83. PubMed ID: 2359125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial, sequence-order-independent structural comparison of alpha/beta proteins: evolutionary implications.
    Fischer D; Wolfson H; Nussinov R
    J Biomol Struct Dyn; 1993 Oct; 11(2):367-80. PubMed ID: 8286062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of polyelectrolyte polypeptide structures using Monte Carlo conformational search methods with implicit solvation modeling.
    Evans JS; Chan SI; Goddard WA
    Protein Sci; 1995 Oct; 4(10):2019-31. PubMed ID: 8535238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of sequence-similar pentapeptides in unrelated protein tertiary structures. Strategies for protein folding and a guide for site-directed mutagenesis.
    Argos P
    J Mol Biol; 1987 Sep; 197(2):331-48. PubMed ID: 3681998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvements in a secondary structure prediction method based on a search for local sequence homologies and its use as a model building tool.
    Levin JM; Garnier J
    Biochim Biophys Acta; 1988 Aug; 955(3):283-95. PubMed ID: 3401489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folding and function of the myelin proteins from primary sequence data.
    Inouye H; Kirschner DA
    J Neurosci Res; 1991 Jan; 28(1):1-17. PubMed ID: 1710279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Database of homology-derived protein structures and the structural meaning of sequence alignment.
    Sander C; Schneider R
    Proteins; 1991; 9(1):56-68. PubMed ID: 2017436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bridging the protein sequence-structure gap by structure predictions.
    Rost B; Sander C
    Annu Rev Biophys Biomol Struct; 1996; 25():113-36. PubMed ID: 8800466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein secondary structure prediction with SPARROW.
    Bettella F; Rasinski D; Knapp EW
    J Chem Inf Model; 2012 Feb; 52(2):545-56. PubMed ID: 22224407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformations of the third hypervariable region in the VH domain of immunoglobulins.
    Morea V; Tramontano A; Rustici M; Chothia C; Lesk AM
    J Mol Biol; 1998 Jan; 275(2):269-94. PubMed ID: 9466909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secondary structure prediction and protein design.
    Garnier J; Levin JM; Gibrat JF; Biou V
    Biochem Soc Symp; 1990; 57():11-24. PubMed ID: 2099736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of chameleon sequences and their implications in biological processes.
    Guo JT; Jaromczyk JW; Xu Y
    Proteins; 2007 May; 67(3):548-58. PubMed ID: 17299764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 1H and 15N assignment of NMR spectrum, secondary structure and global folding of the immunophilin-like domain of the 59-kDa FK506-binding protein.
    Rouvière-Fourmy N; Craescu CT; Mispelter J; Lebeau MC; Baulieu EE
    Eur J Biochem; 1995 Aug; 231(3):761-72. PubMed ID: 7544285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The solution structure of a chimeric LEKTI domain reveals a chameleon sequence.
    Tidow H; Lauber T; Vitzithum K; Sommerhoff CP; Rösch P; Marx UC
    Biochemistry; 2004 Sep; 43(35):11238-47. PubMed ID: 15366933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The sharing of amino acid short spans by ancestrally unrelated proteins may be the result of ubiquitous alpha and beta secondary structures.
    Wuilmart C; Delhaise P; Urbain J
    Biosystems; 1982; 15(3):221-32. PubMed ID: 7139086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.