These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 6422676)

  • 1. [Effects of photochemical smog from a flow reactor on bacteria. I. Determination of the effects of photochemical smog on bacteria].
    Nover H; Botzenhart K
    Zentralbl Bakteriol Mikrobiol Hyg B; 1983 Apr; 177(3-4):282-97. PubMed ID: 6422676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effects of photochemical smog from a flow reactor on bacteria. II. Determination of bactericidal components in photochemical smog].
    Nover H; Botzenhart K
    Zentralbl Bakteriol Mikrobiol Hyg B; 1983 Apr; 177(3-4):298-311. PubMed ID: 6422677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bactericidal effects of photochemical smog constituents produced by a flow reactor. III. Communication: determination of mutagenic effects of photochemical smog on E. coli K 12 343/113.
    Nover H; Botzenhart K
    Zentralbl Bakteriol Mikrobiol Hyg B; 1985 Jun; 181(1-2):71-80. PubMed ID: 3901606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of ozone on airborne microorganisms].
    Heindel TH; Streib R; Botzenhart K
    Zentralbl Hyg Umweltmed; 1993 Sep; 194(5-6):464-80. PubMed ID: 8267833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Comparative investigations on the efficiency of chlorine and ozone against bacteria and spores (author's transl)].
    Fischer P; Thofern E; Botzenhart K
    Zentralbl Bakteriol Orig B; 1978 May; 166(4-5):399-407. PubMed ID: 418606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of nitric oxide and nitrogen dioxide on bacterial growth.
    Mancinelli RL; McKay CP
    Appl Environ Microbiol; 1983 Jul; 46(1):198-202. PubMed ID: 6351744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on the biological effects of nitrogen oxides and photochemical oxidants.
    Nakajima T; Kusumoto S; Oda H; Nogami H
    Southeast Asian J Trop Med Public Health; 1979 Dec; 10(4):604-9. PubMed ID: 538510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of ultraviolet on the survival of bacteria airborne in simulated Martian dust clouds.
    Hagen CA; Hawrylewicz EJ; Anderson BT; Cephus ML
    Life Sci Space Res; 1970; 8():53-8. PubMed ID: 12664918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative toxicity of various ozonized olefins to bacteria suspended in air.
    Dark FA; Nash T
    J Hyg (Lond); 1970 Jun; 68(2):245-52. PubMed ID: 4914088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photochemical smog effects in mixed conifer forests along a natural gradient of ozone and nitrogen deposition in the San Bernardino Mountains.
    Arbaugh M; Bytnerowicz A; Grulke N; Fenn M; Poth M; Temple P; Miller P
    Environ Int; 2003 Jun; 29(2-3):401-6. PubMed ID: 12676233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The predicted effect of carbon monoxide on the ozone levels in photochemical smog systems.
    Demerjian KL; Kerr JA; Calvert JG
    Environ Lett; 1972; 3(2):73-80. PubMed ID: 5026809
    [No Abstract]   [Full Text] [Related]  

  • 12. Atmospheric photochemical transformations enhance 1,3-butadiene-induced inflammatory responses in human epithelial cells: The role of ozone and other photochemical degradation products.
    Doyle M; Sexton KG; Jeffries H; Jaspers I
    Chem Biol Interact; 2007 Mar; 166(1-3):163-9. PubMed ID: 16860297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trends in photochemical smog in the Cape Peninsula and the implications for health.
    Bailie RS; Ehrlich RI; Truluck TF
    S Afr Med J; 1994 Nov; 84(11):738-42. PubMed ID: 7495009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photochemical products in urban mixtures enhance inflammatory responses in lung cells.
    Sexton KG; Jeffries HE; Jang M; Kamens RM; Doyle M; Voicu I; Jaspers I
    Inhal Toxicol; 2004; 16 Suppl 1():107-14. PubMed ID: 15204799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relative importance of the various intermediate species in olefin removal reactions in photochemical smog.
    Demerjian KL; Kerr JA; Calvert JG
    Environ Lett; 1972; 3(3):137-49. PubMed ID: 5072265
    [No Abstract]   [Full Text] [Related]  

  • 16. Effects in hyperoxia upon microorganisms. I. Membrane culture technique for exposing cells directly to test atmospheres.
    Brown OR; Huggett DO
    Appl Microbiol; 1968 Mar; 16(3):476-9. PubMed ID: 4967757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Smog chamber simulation of ozone formation from atmospheric photooxidation of propane].
    Huang LH; Mo CR; Xu YF; Jia L
    Huan Jing Ke Xue; 2012 Aug; 33(8):2551-7. PubMed ID: 23213871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA bulky adducts in a Mediterranean population correlate with environmental ozone concentration, an indicator of photochemical smog.
    Palli D; Saieva C; Grechi D; Masala G; Zanna I; Barbaro A; Decarli A; Munnia A; Peluso M
    Int J Cancer; 2004 Mar; 109(1):17-23. PubMed ID: 14735463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of the toxicology of air pollutants: toxicology of chemical mixtures.
    Oehme FW; Coppock RW; Mostrom MS; Khan AA
    Vet Hum Toxicol; 1996 Oct; 38(5):371-7. PubMed ID: 8888547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a speciated, hourly, and gridded air pollutants emission modeling system--a case study on the precursors of photochemical smog in the Seoul metropolitan area, Korea.
    Kim DY; Kim JW
    J Air Waste Manag Assoc; 2000 Mar; 50(3):340-7. PubMed ID: 10734706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.