These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 6422734)

  • 21. A comparative study of different tissue materials for bioprosthetic aortic valves using experimental assays and finite element analysis.
    Rassoli A; Fatouraee N; Guidoin R; Zhang Z; Ravaghi S
    Comput Methods Programs Biomed; 2022 Jun; 220():106813. PubMed ID: 35461127
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanisms of the in vivo inhibition of calcification of bioprosthetic porcine aortic valve cusps and aortic wall with triglycidylamine/mercapto bisphosphonate.
    Rapoport HS; Connolly JM; Fulmer J; Dai N; Murti BH; Gorman RC; Gorman JH; Alferiev I; Levy RJ
    Biomaterials; 2007 Feb; 28(4):690-9. PubMed ID: 17027944
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Immune Responses and Calcification of Bioprostheses in the α1,3-Galactosyltransferase Knockout Mouse.
    Sung Jeong W; Jin Kim Y; Lim HG; Jung S; Ryul Lee J
    J Heart Valve Dis; 2016 Mar; 25(2):253-261. PubMed ID: 27989076
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of fixation back pressure and antimineralization treatment on the morphology of porcine aortic bioprosthetic valves.
    Flomenbaum MA; Schoen FJ
    J Thorac Cardiovasc Surg; 1993 Jan; 105(1):154-64. PubMed ID: 8419696
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Surgical pathology analysis of the causes of failure of 48 bioprosthetic heart valves in 40 Chinese cases].
    Duan XJ; Wang HY; Xu JP; Li L; Xu HY; Wang QZ
    Zhonghua Wai Ke Za Zhi; 2016 Sep; 54(9):710-5. PubMed ID: 27587216
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Viscoelasticity of dynamically fixed bioprosthetic valves. II. Effect of glutaraldehyde concentration.
    Duncan AC; Boughner D; Vesely I
    J Thorac Cardiovasc Surg; 1997 Feb; 113(2):302-10. PubMed ID: 9040624
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomechanical and structural properties of the explanted bioprosthetic valve leaflets.
    Purinya B; Kasyanov V; Volkolakov J; Latsis R; Tetere G
    J Biomech; 1994 Jan; 27(1):1-11. PubMed ID: 8106530
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A morphologic overview of the porcine bioprosthetic valve--before and after its degeneration.
    Riddle JM; Jennings JJ; Stein PD; Magilligan DJ
    Scan Electron Microsc; 1984; (Pt 1):207-14. PubMed ID: 6740225
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanical properties of a porcine aortic valve fixed with a naturally occurring crosslinking agent.
    Sung HW; Chang Y; Chiu CT; Chen CN; Liang HC
    Biomaterials; 1999 Oct; 20(19):1759-72. PubMed ID: 10509186
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The decellularized porcine heart valve matrix in tissue engineering: platelet adhesion and activation.
    Kasimir MT; Weigel G; Sharma J; Rieder E; Seebacher G; Wolner E; Simon P
    Thromb Haemost; 2005 Sep; 94(3):562-7. PubMed ID: 16268473
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anisotropic elasticity and strength of glutaraldehyde fixed bovine pericardium for use in pericardial bioprosthetic valves.
    Zioupos P; Barbenel JC; Fisher J
    J Biomed Mater Res; 1994 Jan; 28(1):49-57. PubMed ID: 8126028
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of the cross-linking characteristics of porcine heart valves fixed with glutaraldehyde or epoxy compounds.
    Sung HW; Shen SH; Tu R; Lin D; Hata C; Noishiki Y; Tomizawa Y; Quijano RC
    ASAIO J; 1993; 39(3):M532-6. PubMed ID: 8268592
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative study of primary tissue valve failure between Ionescu-Shiley pericardial and Hancock porcine valves in the aortic position.
    Nistal F; García-Satué E; Artiñano E; Durán CM; Gallo I
    Am J Cardiol; 1986 Jan; 57(1):161-4. PubMed ID: 3942062
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pathologic findings in explanted clinical bioprosthetic valves fabricated from photooxidized bovine pericardium.
    Schoen FJ
    J Heart Valve Dis; 1998 Mar; 7(2):174-9. PubMed ID: 9587858
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extracellular matrix degrading enzymes are active in porcine stentless aortic bioprosthetic heart valves.
    Simionescu DT; Lovekamp JJ; Vyavahare NR
    J Biomed Mater Res A; 2003 Sep; 66(4):755-63. PubMed ID: 12926026
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of the compressive buckling of porcine aortic valve cusps and bovine pericardium.
    Vesely I; Mako WJ
    J Heart Valve Dis; 1998 Jan; 7(1):34-9. PubMed ID: 9502137
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Elimination of alpha-gal xenoreactive epitope: alpha-galactosidase treatment of porcine heart valves.
    Choi SY; Jeong HJ; Lim HG; Park SS; Kim SH; Kim YJ
    J Heart Valve Dis; 2012 May; 21(3):387-97. PubMed ID: 22808845
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thrombogenetic studies of bioprosthetic heart valve surfaces. I. In vitro platelet adhesion in a static system.
    Hum OS; Ghista DN; Brash JL
    Thromb Res; 1985 Apr; 38(2):163-72. PubMed ID: 3923650
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pericardial heterografts: why do these valves fail?
    Trowbridge EA; Lawford PV; Crofts CE; Roberts KM
    J Thorac Cardiovasc Surg; 1988 Apr; 95(4):577-85. PubMed ID: 3352291
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure and Rheological Properties of Bovine Aortic Heart Valve and Pericardium Tissue: Implications in Bioprosthetic and Tissue-Engineered Heart Valves.
    Alhadrami HA; Syed RUR; Zahid AA; Ahmed R; Hasan S; Hasan A
    J Healthc Eng; 2019; 2019():3290370. PubMed ID: 31976052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.