BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 6422994)

  • 1. NADPH-dependent reduction of ubiquinone-1 associated with the superoxide-forming oxidase of pig polymorphonuclear leucocytes.
    Takeshige K; Wakeyama H; Minakami S
    Biochim Biophys Acta; 1984 Mar; 798(1):127-31. PubMed ID: 6422994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NADPH-dependent reduction of 2,6-dichlorophenol-indophenol by the phagocytic vesicles of pig polymorphonuclear leucocytes.
    Wakeyama H; Takeshige K; Minakami S
    Biochem J; 1983 Feb; 210(2):577-81. PubMed ID: 6860311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NADPH-dependent superoxide-forming oxidase in phagocytic vesicles of human monocytes.
    Takamatsu J; Takeshige K; Takahashi S; Yoshitake J; Minakami S
    J Biochem; 1986 Jun; 99(6):1597-604. PubMed ID: 3745137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NADPH oxidase of neutrophils forms superoxide anion but does not reduce cytochrome c and dichlorophenolindophenol.
    Bellavite P; della Bianca V; Serra MC; Papini E; Rossi F
    FEBS Lett; 1984 May; 170(1):157-61. PubMed ID: 6327373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Composition of partially purified NADPH oxidase from pig neutrophils.
    Bellavite P; Jones OT; Cross AR; Papini E; Rossi F
    Biochem J; 1984 Nov; 223(3):639-48. PubMed ID: 6439185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superoxide-forming NADPH oxidase preparation of pig polymorphonuclear leucocyte.
    Wakeyama H; Takeshige K; Takayanagi R; Minakami S
    Biochem J; 1982 Sep; 205(3):593-601. PubMed ID: 6293459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The superoxide-generating oxidase of leucocytes. NADPH-dependent reduction of flavin and cytochrome b in solubilized preparations.
    Cross AR; Parkinson JF; Jones OT
    Biochem J; 1984 Oct; 223(2):337-44. PubMed ID: 6497852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delineation of the catalytic components of the NADPH-dependent O2- generating oxidoreductase of human neutrophils.
    Green TR; Wirtz MK; Wu DE
    Biochem Biophys Res Commun; 1983 Feb; 110(3):873-9. PubMed ID: 6301466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The NADPH oxidase of guinea pig polymorphonuclear leucocytes. Properties of the deoxycholate extracted enzyme.
    Bellavite P; Serra MC; Davoli A; Bannister JV; Rossi F
    Mol Cell Biochem; 1983; 52(1):17-25. PubMed ID: 6865930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ubiquinone-5 is reduced by superoxide in the aerobic state by NADPH oxidase of guinea pig macrophages.
    Nakamura M; Murakami M; Umei T; Minakami S
    FEBS Lett; 1985 Jul; 186(2):215-8. PubMed ID: 2989007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation.
    Takeshige K; Minakami S
    Biochem J; 1979 Apr; 180(1):129-35. PubMed ID: 39543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of NADPH-dependent ubiquinone reductase activity in rat liver cytosol: effect of various factors on ubiquinone-reducing activity and discrimination from other quinone reductases.
    Takahashi T; Okamoto T; Kishi T
    J Biochem; 1996 Feb; 119(2):256-63. PubMed ID: 8882715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective inhibition of mitochondrial NADH-ubiquinone reductase (Complex I) by an alkyl polyoxyethylene ether.
    Suzuki H; Wakai M; Ozawa T
    Biochem Int; 1986 Aug; 13(2):351-7. PubMed ID: 3094534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Essential requirement of magnesium ion for optimal activity of the NADPH oxidase of guinea pig polymorphonuclear leukocytes.
    Yamaguchi T; Kaneda M; Kakinuma K
    Biochem Biophys Res Commun; 1983 Aug; 115(1):261-7. PubMed ID: 6311205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NADPH oxidase of guinea-pig macrophages catalyses the reduction of ubiquinone-1 under anaerobic conditions.
    Murakami M; Nakamura M; Minakami S
    Biochem J; 1986 Jul; 237(2):541-5. PubMed ID: 3026322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase.
    Kotlyar AB; Vinogradov AD
    Biochim Biophys Acta; 1990 Aug; 1019(2):151-8. PubMed ID: 2119805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NADPH binding component of neutrophil superoxide-generating oxidase.
    Umei T; Takeshige K; Minakami S
    J Biol Chem; 1986 Apr; 261(12):5229-32. PubMed ID: 3007494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of superoxide formation by respiratory chain NADH- dehydrogenase of bovine heart mitochondria.
    Kang D; Narabayashi H; Sata T; Takeshige K
    J Biochem; 1983 Oct; 94(4):1301-6. PubMed ID: 6317663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and properties of an O2-.-generating oxidase from bovine polymorphonuclear neutrophils.
    Doussiere J; Vignais PV
    Biochemistry; 1985 Dec; 24(25):7231-9. PubMed ID: 3002451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on the NADPH oxidase of phagocytes. Production of a monoclonal antibody which blocks the enzymatic activity of pig neutrophil NADPH oxidase.
    Berton G; Dusi S; Serra MC; Bellavite P; Rossi F
    J Biol Chem; 1989 Apr; 264(10):5564-8. PubMed ID: 2925620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.