These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 6423416)

  • 1. Riboflavin analogs utilized for metabolism by a Lactobacillus casei mutant.
    Lambooy JP
    Int J Biochem; 1984; 16(2):231-4. PubMed ID: 6423416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vitamin B2 activity of 7,8-dimethyl-10-(2,3,4-trihydroxy-4-formylbutyl)isoalloxazine in Lactobacillus casei.
    Tachibana S; Oka M; Tamura H; Kamei A; Mukai H; Kanbayashi C; Shioiri I
    J Nutr Sci Vitaminol (Tokyo); 1979; 25(5):361-6. PubMed ID: 120425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Syntheses and biological activities of 7-ethyl-8-chloro-10-(1'-D-ribityl) isoalloxazine and 7-chloro-8-ethyl-10(1'-D-ribityl) isoalloxazine, analogs of riboflavin.
    Lambooy JP; Lambooy JP
    J Med Chem; 1973 Jul; 16(7):765-70. PubMed ID: 4199215
    [No Abstract]   [Full Text] [Related]  

  • 4. Syntheses and biological activities of 7-ethyl-8-bromo-10-(1'-D-ribityl)isoalloxazine and 7-bromo-8-ethyl-10-(1'-D-ribityl)isoalloxazine, analogs of riboflavin.
    Lambooy JP
    J Med Chem; 1974 Feb; 17(2):227-30. PubMed ID: 4203369
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of riboflavon analogs on the growth of Tetrahymena pyriformis.
    Wallace WC; Holmlund CE
    J Nutr; 1980 Oct; 110(10):2113-6. PubMed ID: 6775059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of the riboflavine inhibitor 6-chloro-7-methyl-9-(1'-D-ribityl)isoalloxazine by Lactobacillus casei.
    SCALA RA; LAMBOOY JP
    Arch Biochem Biophys; 1958 Nov; 78(1):10-4. PubMed ID: 13595898
    [No Abstract]   [Full Text] [Related]  

  • 7. Synthesis and biological activity of 7-methyl-8-bromo-10-(1'-D-ribityl)isoalloxazine, an analog of riboflavin.
    Lambooy JP
    Proc Soc Exp Biol Med; 1972 Dec; 141(3):948-52. PubMed ID: 4630289
    [No Abstract]   [Full Text] [Related]  

  • 8. The resorption of riboflavin by young and old cultures of Lactobacillus casei.
    COHEN IR; RAHN O
    Growth; 1951 Sep; 15(3):141-5. PubMed ID: 14887964
    [No Abstract]   [Full Text] [Related]  

  • 9. Urinary riboflavin metabolites in the rat.
    Tillotson JA; Karcz MS
    J Nutr; 1977 Jul; 107(7):1269-76. PubMed ID: 406370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies in intermicrobial symbiosis. Saccharomyces cerevisiae and Lactobacillus casei.
    Megee RD; Drake JF; Fredrickson AG; Tsuchiya HM
    Can J Microbiol; 1972 Nov; 18(11):1733-42. PubMed ID: 4628673
    [No Abstract]   [Full Text] [Related]  

  • 11. Activity of 6,7-diethyl-9-(D-1'-ribityl)-isoalloxazine for Lactobacillus casei.
    LAMBOOY JP
    J Biol Chem; 1951 Feb; 188(2):459-62. PubMed ID: 14824132
    [No Abstract]   [Full Text] [Related]  

  • 12. [Effect of trifluoromethyl analogs of riboflavin on growth of Lactobacillus casei].
    Shavlovskiĭ GM; Senchina VP
    Mikrobiologiia; 1972; 41(2):367-8. PubMed ID: 4625448
    [No Abstract]   [Full Text] [Related]  

  • 13. [Effect of riboflavin analogs on Pichia guilliermondii growth].
    Kashchenko VE; Shavlovskiĭ GM; Babiak LIa
    Mikrobiologiia; 1982; 51(4):593-600. PubMed ID: 7144611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient MutS-Based Hypermutation System for Adaptive Evolution of Lactobacillus casei to Low pH.
    Overbeck TJ; Welker DL; Hughes JE; Steele JL; Broadbent JR
    Appl Environ Microbiol; 2017 Oct; 83(20):. PubMed ID: 28802267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the response to low pH of Lactobacillus casei ΔRR12, a mutant strain with low D-alanylation activity and sensitivity to low pH.
    Revilla-Guarinos A; Alcántara C; Rozès N; Voigt B; Zúñiga M
    J Appl Microbiol; 2014 May; 116(5):1250-61. PubMed ID: 24506696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of riboflavin analogues upon the utilization of riboflavin and flavin adenine dinucleotide by Lactobacillus casei.
    SARETT HP
    J Biol Chem; 1946 Jan; 162():87-97. PubMed ID: 21010896
    [No Abstract]   [Full Text] [Related]  

  • 17. Reconstruction and analysis of the genome-scale metabolic model of Lactobacillus casei LC2W.
    Xu N; Liu J; Ai L; Liu L
    Gene; 2015 Jan; 554(2):140-7. PubMed ID: 25452194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of recombinant Lactobacillus casei strains using splicing by overlap extension.
    Jeong DW; Lee JH; Lee HJ
    J Microbiol Biotechnol; 2008 Dec; 18(12):1953-7. PubMed ID: 19131699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of exopolysaccharide production in Lactobacillus casei LC2W by overexpression of NADH oxidase gene.
    Li N; Wang Y; Zhu P; Liu Z; Guo B; Ren J
    Microbiol Res; 2015 Feb; 171():73-7. PubMed ID: 25644955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of heterologous catalase expression and superoxide dismutase overexpression on enhancing the oxidative resistance in Lactobacillus casei.
    Lin J; Zou Y; Cao K; Ma C; Chen Z
    J Ind Microbiol Biotechnol; 2016 May; 43(5):703-11. PubMed ID: 26922415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.