BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 6423621)

  • 1. Fibrinopeptides A and B of baboons (Papio anubis, Papio hamadryas, and Theropithecus gelada): their amino acid sequences and evolutionary rates and a molecular phylogeny for the baboons.
    Nakamura S; Takenaka O; Takahashi K
    J Biochem; 1983 Dec; 94(6):1973-8. PubMed ID: 6423621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fibrinopeptides A and B of Japanese monkey (Macaca fuscata) and patas monkey (Erythrocebus patas): their amino acid sequences, restricted mutations, and a molecular phylogeny for macaques, guenons, and baboons.
    Nakamura S; Takenaka O; Takahashi K
    J Biochem; 1985 May; 97(5):1487-92. PubMed ID: 3928610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial DNA phylogeny of the Old-World monkey tribe Papionini.
    Disotell TR; Honeycutt RL; Ruvolo M
    Mol Biol Evol; 1992 Jan; 9(1):1-13. PubMed ID: 1313138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular phylogeny of Old World monkeys (Cercopithecidae) as inferred from gamma-globin DNA sequences.
    Page SL; Chiu Ch; Goodman M
    Mol Phylogenet Evol; 1999 Nov; 13(2):348-59. PubMed ID: 10603263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A field study of infection with human T-cell leukemia virus among African primates.
    Ishida T; Yamamoto K; Shotake T; Nozawa K; Hayami M; Hinuma Y
    Microbiol Immunol; 1986; 30(4):315-21. PubMed ID: 2873501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphological and physiological aspects of digestive processes in the graminivorous primate Theropithecus gelada-a preliminary study.
    Mau M; Johann A; Sliwa A; Hummel J; Südekum KH
    Am J Primatol; 2011 May; 73(5):449-57. PubMed ID: 21432874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of baboon endogenous virus among species of African monkeys suggests multiple ancient cross-species transmissions in shared habitats.
    van der Kuyl AC; Dekker JT; Goudsmit J
    J Virol; 1995 Dec; 69(12):7877-87. PubMed ID: 7494300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Saliva of the graminivorous Theropithecus gelada lacks proline-rich proteins and tannin-binding capacity.
    Mau M; Südekum KH; Johann A; Sliwa A; Kaiser TM
    Am J Primatol; 2009 Aug; 71(8):663-9. PubMed ID: 19431194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial evidence for the origin of hamadryas baboons.
    Wildman DE; Bergman TJ; al-Aghbari A; Sterner KN; Newman TK; Phillips-Conroy JE; Jolly CJ; Disotell TR
    Mol Phylogenet Evol; 2004 Jul; 32(1):287-96. PubMed ID: 15186814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Major histocompatibility complex DQA1 nucleotide sequences of gelada baboon (Theropithecus gelada), olive baboon (Papio anubis), and yellow baboon.
    Mwenda JM; Takenaka O; Kim HS; Yamamoto T; Gurja B; Katsumata Y; Bambra CS; Uchihi R; Shotake T
    Immunogenetics; 1997; 46(4):365-6. PubMed ID: 9218546
    [No Abstract]   [Full Text] [Related]  

  • 11.
    Walker JA; Jordan VE; Storer JM; Steely CJ; Gonzalez-Quiroga P; Beckstrom TO; Rewerts LC; St Romain CP; Rockwell CE; Rogers J; Jolly CJ; Konkel MK; ; Batzer MA
    Mob DNA; 2019; 10():46. PubMed ID: 31788036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crossing the Red Sea: phylogeography of the hamadryas baboon, Papio hamadryas hamadryas.
    Winney BJ; Hammond RL; Macasero W; Flores B; Boug A; Biquand V; Biquand S; Bruford MW
    Mol Ecol; 2004 Sep; 13(9):2819-27. PubMed ID: 15315692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High prevalence of simian T-lymphotropic virus type L in wild ethiopian baboons.
    Takemura T; Yamashita M; Shimada MK; Ohkura S; Shotake T; Ikeda M; Miura T; Hayami M
    J Virol; 2002 Feb; 76(4):1642-8. PubMed ID: 11799159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogeography, mitochondrial DNA diversity, and demographic history of geladas (Theropithecus gelada).
    Zinner D; Atickem A; Beehner JC; Bekele A; Bergman TJ; Burke R; Dolotovskaya S; Fashing PJ; Gippoliti S; Knauf S; Knauf Y; Mekonnen A; Moges A; Nguyen N; Stenseth NC; Roos C
    PLoS One; 2018; 13(8):e0202303. PubMed ID: 30138418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A proper study for mankind: Analogies from the Papionin monkeys and their implications for human evolution.
    Jolly CJ
    Am J Phys Anthropol; 2001; Suppl 33():177-204. PubMed ID: 11786995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [ON THE "HYBRID" ANTIGEN IN MONKEYS (THEROPITHECUS GELADA X PAPIO HAMADRYAS)].
    KONIUKHOV BV; BOCHKOV NP; SAZHINA MV
    Biull Eksp Biol Med; 1963 May; 55():111-4. PubMed ID: 14077733
    [No Abstract]   [Full Text] [Related]  

  • 17. Simian T Lymphotropic Virus 1 Infection of Papio anubis:
    Termini JM; Magnani DM; Maxwell HS; Lauer W; Castro I; Pecotte J; Barber GN; Watkins DI; Desrosiers RC
    J Virol; 2017 Oct; 91(20):. PubMed ID: 28724769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial evidence for the hybrid origin of the kipunji, Rungwecebus kipunji (Primates: Papionini).
    Burrell AS; Jolly CJ; Tosi AJ; Disotell TR
    Mol Phylogenet Evol; 2009 May; 51(2):340-8. PubMed ID: 19236932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing responses to novel objects in wild baboons (Papio ursinus) and geladas (Theropithecus gelada).
    Bergman TJ; Kitchen DM
    Anim Cogn; 2009 Jan; 12(1):63-73. PubMed ID: 18574603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bipedal behavior of olive baboons (Papio anubis) and its relevance to an understanding of the evolution of human bipedalism.
    Rose MD
    Am J Phys Anthropol; 1976 Mar; 44(2):247-61. PubMed ID: 816205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.