BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 6423635)

  • 1. Wide distribution of pH-dependent service of transport system ASC for both anionic and zwitterionic amino acids.
    Vadgama JV; Christensen HN
    J Biol Chem; 1984 Mar; 259(6):3648-52. PubMed ID: 6423635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The A, ASC, and L systems for the transport of amino acids in Chinese hamster ovary cells (CHO-K1).
    Bass R; Hedegaard HB; Dillehay L; Moffett J; Englesberg E
    J Biol Chem; 1981 Oct; 256(20):10259-66. PubMed ID: 7287709
    [No Abstract]   [Full Text] [Related]  

  • 3. Neutral amino acid transport systems in Chinese hamster ovary cells.
    Shotwell MA; Jayme DW; Kilberg MS; Oxender DL
    J Biol Chem; 1981 Jun; 256(11):5422-7. PubMed ID: 7240147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hepatic transport system interconverted by protonation from service for neutral to service for anionic amino acids.
    Makowske M; Christensen HN
    J Biol Chem; 1982 Dec; 257(24):14635-8. PubMed ID: 7174659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of protein dissociation in the transport of acidic amino acids by the Ehrlich ascites tumor cell.
    Garcia-Sancho J; Sanchez A; Christensen HN
    Biochim Biophys Acta; 1977 Jan; 464(2):295-312. PubMed ID: 12815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relation of amino acid transport to sodium-ion concentration.
    Wheeler KP; Inui Y; Hollenberg PF; Eavenson E; Christensen HN
    Biochim Biophys Acta; 1965 Nov; 109(2):620-2. PubMed ID: 5867563
    [No Abstract]   [Full Text] [Related]  

  • 7. Transport systems for neutral amino acids in the pigeon erythrocyte.
    Eavenson E; Christensen HN
    J Biol Chem; 1967 Nov; 242(22):5386-96. PubMed ID: 6065101
    [No Abstract]   [Full Text] [Related]  

  • 8. Intracellular transport of thialysine and selenalysine in CHO cells.
    Busiello V; Di Girolamo A; Cini C; Foppoli C; Di Girolamo M
    Physiol Chem Phys Med NMR; 1987; 19(1):23-7. PubMed ID: 3112812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupled transport of sodium and organic solutes.
    Schultz SG; Curran PF
    Physiol Rev; 1970 Oct; 50(4):637-718. PubMed ID: 4919599
    [No Abstract]   [Full Text] [Related]  

  • 10. Discrimination of Na+-independent transport systems L, T, and asc in erythrocytes. Na+ independence of the latter a consequence of cell maturation?
    Vadgama JV; Christensen HN
    J Biol Chem; 1985 Mar; 260(5):2912-21. PubMed ID: 3919011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Features of amino acid structure enhancing or obstructing cosubstrate reactivity of Na+ in transport.
    Christensen HN; Thomas EL; Handlogten ME
    Biochim Biophys Acta; 1969 Oct; 193(1):228-30. PubMed ID: 5349615
    [No Abstract]   [Full Text] [Related]  

  • 12. [The role of sodium in amino acid transport].
    Kovtuniak NA; Meshchisen IF
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1974; 4():46-51. PubMed ID: 4827443
    [No Abstract]   [Full Text] [Related]  

  • 13. Surprising differences in substrate selectivity and other properties of systems A and ASC between rat hepatocytes and the hepatoma cell line HTC.
    Handlogten ME; Garcia-Cañero R; Lancaster KT; Christensen HN
    J Biol Chem; 1981 Aug; 256(15):7905-9. PubMed ID: 6790528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of substrate structure on coupling ratio for Na + -dependent transport of amino acids.
    Koser BH; Christensen HN
    Biochim Biophys Acta; 1971 Jul; 241(1):9-19. PubMed ID: 5125251
    [No Abstract]   [Full Text] [Related]  

  • 15. Alanine-resistant mutants of Chinese hamster ovary cells, CHO-K1, producing increases in velocity of proline transport through the A, ASC, and P systems.
    Moffett J; Curriden S; Ertsey R; Mendiaz E; Englesberg E
    Somatic Cell Genet; 1983 Mar; 9(2):189-213. PubMed ID: 6403992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tryptophan transport through transport system T in the human erythrocyte, the Ehrlich cell and the rat intestine.
    López-Burillo S; García-Sancho J; Herreros B
    Biochim Biophys Acta; 1985 Oct; 820(1):85-94. PubMed ID: 4052418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energization of amino acid transport, studied for the Ehrlich ascites tumor cell.
    Christensen HN; de Cespedes C; Handlogten ME; Ronquist G
    Biochim Biophys Acta; 1973 Dec; 300(4):487-522. PubMed ID: 4130564
    [No Abstract]   [Full Text] [Related]  

  • 18. Cysteine as a system-specific substrate for transport system ASC in rat hepatocytes.
    Kilberg MS; Christensen HN; Handlogten ME
    Biochem Biophys Res Commun; 1979 May; 88(2):744-51. PubMed ID: 465067
    [No Abstract]   [Full Text] [Related]  

  • 19. Synthesis and transport applications of 3-aminobicyclo[3.2.1] octane-3-carboxylic acids.
    Christensen HN; Handlogten ME; Vadgama JV; de la Cuesta E; Ballesteros P; Trigo GG; Avendaño C
    J Med Chem; 1983 Oct; 26(10):1374-8. PubMed ID: 6413692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of amino acid transport system L in Chinese hamster ovary cells.
    Shotwell MA; Mattes PM; Jayme DW; Oxender DL
    J Biol Chem; 1982 Mar; 257(6):2974-80. PubMed ID: 7061459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.