These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 6423769)

  • 21. Genetic and physiological characterization of Pseudomonas aeruginosa mutants affected in the catabolic ornithine carbamoyltransferase.
    Hass D; Evans R; Mercenier A; Simon JP; Stalon V
    J Bacteriol; 1979 Sep; 139(3):713-20. PubMed ID: 113384
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The pathway of arginine catabolism in the parasitic flagellate Trichomonas vaginalis.
    Linstead D; Cranshaw MA
    Mol Biochem Parasitol; 1983 Jul; 8(3):241-52. PubMed ID: 6312311
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel Route for Agmatine Catabolism in Aspergillus niger Involves 4-Guanidinobutyrase.
    Kumar S; Saragadam T; Punekar NS
    Appl Environ Microbiol; 2015 Aug; 81(16):5593-603. PubMed ID: 26048930
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization and regulation of the gbuA gene, encoding guanidinobutyrase in the arginine dehydrogenase pathway of Pseudomonas aeruginosa PAO1.
    Nakada Y; Itoh Y
    J Bacteriol; 2002 Jun; 184(12):3377-84. PubMed ID: 12029055
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolation of alginate-producing mutants of Pseudomonas fluorescens, Pseudomonas putida and Pseudomonas mendocina.
    Govan JR; Fyfe JA; Jarman TR
    J Gen Microbiol; 1981 Jul; 125(1):217-20. PubMed ID: 6801192
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of enzyme synthesis in the arginine deiminase pathway of Pseudomonas aeruginosa.
    Mercenier A; Simon JP; Vander Wauven C; Haas D; Stalon V
    J Bacteriol; 1980 Oct; 144(1):159-63. PubMed ID: 6252188
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thin-layer chromatography of arginine, lysine and ornithine decarboxylase activity among Pseudomonas spp. and Enterobacteriaceae.
    Zolg W; Ottow JC
    Microbios; 1974 May; 10(40):225-31. PubMed ID: 4855192
    [No Abstract]   [Full Text] [Related]  

  • 28. Arginine catabolism by strains of oral streptococci.
    Floderus E; Linder LE; Sund ML
    APMIS; 1990 Nov; 98(11):1045-52. PubMed ID: 2248769
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [About the decomposition of acetamide as taxonomic marker for some species of the genus pseudomonas (author's transl)].
    Schubert RH; Esanu JG; Esanu F
    Zentralbl Bakteriol Orig A; 1975 Nov; 233(3):342-6. PubMed ID: 814748
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Control of arginine biosynthesis in Pseudomonas aeruginosa.
    Isaac JH; Holloway BW
    J Gen Microbiol; 1972 Dec; 73(3):427-38. PubMed ID: 4632763
    [No Abstract]   [Full Text] [Related]  

  • 31. Enzymes of agmatine degradation and the control of their synthesis in Streptococcus faecalis.
    Simon JP; Stalon V
    J Bacteriol; 1982 Nov; 152(2):676-81. PubMed ID: 6290446
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Arginine metabolism in the deep sea tube worm Riftia pachyptila and its bacterial endosymbiont.
    Minic Z; Herve G
    J Biol Chem; 2003 Oct; 278(42):40527-33. PubMed ID: 12882969
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oxygen and nitrate in utilization by Bacillus licheniformis of the arginase and arginine deiminase routes of arginine catabolism and other factors affecting their syntheses.
    Broman K; Lauwers N; Stalon V; Wiame JM
    J Bacteriol; 1978 Sep; 135(3):920-7. PubMed ID: 690081
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Subcellular localization of the enzymes of the arginine dihydrolase pathway in Trichomonas vaginalis and Tritrichomonas foetus.
    Yarlett N; Lindmark DG; Goldberg B; Moharrami MA; Bacchi CJ
    J Eukaryot Microbiol; 1994; 41(6):554-9. PubMed ID: 7866382
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid methods for determining decarboxylase activity: arginine decarboxylase.
    Goldschmidt MC; Lockhart BM
    Appl Microbiol; 1971 Sep; 22(3):350-7. PubMed ID: 5119203
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Arginine catabolism by Treponema denticola.
    Blakemore RP; Canale-Parola E
    J Bacteriol; 1976 Nov; 128(2):616-22. PubMed ID: 977548
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Iron-regulated salicylate synthesis by Pseudomonas spp.
    Visca P; Ciervo A; Sanfilippo V; Orsi N
    J Gen Microbiol; 1993 Sep; 139(9):1995-2001. PubMed ID: 7504066
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of enzyme synthesis in the arginine deiminase pathway of Pseudomonas aeruginosa PAO [proceedings].
    Mercenier A; Simon JP; Stalon V
    Arch Int Physiol Biochim; 1980 Feb; 88(1):B41-B42. PubMed ID: 6155852
    [No Abstract]   [Full Text] [Related]  

  • 39. N2-succinylornithine in ornithine catabolism of Pseudomonas aeruginosa.
    Vander Wauven C; Jann A; Haas D; Leisinger T; Stalon V
    Arch Microbiol; 1988; 150(4):400-4. PubMed ID: 3144259
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The utilization of Tween 80 as carbon source by Pseudomonas.
    Howe TG; Ward JM
    J Gen Microbiol; 1976 Jan; 92(1):234-5. PubMed ID: 812951
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.